
Content Copyright © Virtual Machinery 2020. This content cannot be reproduced without permission

Page 1

JHawk 6.1 Documentation-

Metrics Guide

Virtual Machinery

February 2020

Version 1.6

Content Copyright © Virtual Machinery 2020. This content cannot be reproduced without permission

Page 2

OVERVIEW .. 3

DOCUMENTATION .. 4

Some typical metrics... 7

METRICS WITH JHAWK ... 12

A sensible approach to using metrics ...12

Automating the process ...13

Using Filters ...13

Using the JHawk Data Viewer – how your code quality is changing over time13

METRICS DEFINED IN JHAWK .. 14

System level metrics enabled initially ..14

Package level metrics enabled initially ..14

Class level metrics enabled initially ...15

Method level metrics enabled initially ...15

System level metrics (all) ...16

Package level metrics (all) ...17

Class level metrics (all) ..19

Method level metrics (all)..23

USING THE REVIEW FACTOR METRIC ... 25

How the Review Factor Metric works ...25
Package Level ..25
Class Level ..25
Method Level ..26
Modifying values to be used in the Review Factor metrics ...28

Content Copyright © Virtual Machinery 2020. This content cannot be reproduced without permission

Page 3

Overview
This document is designed to give you an overview of what we are trying to achieve when using code

metrics. This is followed by an approach using JHawk to achieve these aims. A complete list of the Metrics

available in JHawk, and their definitions, is also provided at the end of the document.

Content Copyright © Virtual Machinery 2020. This content cannot be reproduced without permission

Page 4

Documentation
The following documents are provided with the distribution (depending on which license you have

purchased). They are in PDF format and are located in the „docs‟ directory of the distribution –

Document Personal Professional Starter Demo

JHawk6CommandLineManual – Documentation for the

Command line version of JHawk

No Yes No Yes

JHawk6CreateMetric – Documentation explaining how to

create new metrics that can be added to JHawk

Yes Yes No No

JHawk6DataViewerManual – Documentation for the JHawk

DataViewer product

No Yes No Yes

JHawk6Licensing – Licensing details for JHawk products Yes Yes Yes Yes

JHawkStarterManual – Documentation for the JHawk Starter

edition

No No Yes No

JHawk6UserManual – Documentation for the JHawk

standalone application

Yes Yes No Yes

JHawk6UsingMetrics – Documentation outlining how to get

the best from JHawk and a list of the metrics implemented by

JHawk with details of their calculation.. It also includes an

introduction to the area of Java code metrics.

Yes Yes Yes No

Content Copyright © Virtual Machinery 2020. This content cannot be reproduced without permission

Page 5

An Introduction to Metrics

What is a metric?
A metric is defined as the measurement of something. Out in the physical world we talk about metrics like

height, distance, time, volume or area. In this book we will be looking at code quality metrics i.e.

measurable aspects of a piece of code that can be used to assess its quality. Having measured some aspect

of our code we might compare this value against a defined standard, we might compare it to the same

metric calculated for another piece of code or we might compare it to a calculation of the same metric for a

previous version of the same code.

What is software quality?
 There are a lot of aspects to software quality. The most critical aspect is that the software does

what it was designed to do. It should also perform at a speed compatible with its function - Air Traffic

Control Software is expected to perform a lot more rapidly than accounting software. When we use JHawk

to examine our code our primary interest isn‟t whether the software works or how well it works – it‟s what

we can learn from the code.

So what can we tell from looking at a bunch of code? Why would we bother doing it – if the software

meets the spec and runs like lightning why would the way that it has been written matter?

Well, the thing is, we all know that it does matter. Very seldom do we write clean, brand new code, set it

running and leave it untouched forever. Even if there are no bugs, even if the specification was correct from

day one software changes - frequently. Almost every software product is obsolete on the day of release. We

don‟t write brand new code when this happens – we modify the existing code. When we have to maintain

code then somebody other than the writer probably has to read it. Code is very expensive to write and we

therefore expect it to last a long time. I‟ve worked in organisations where there is code that is thirty years

old, and it is still critical to the operation of the organisation. The people maintaining that code are not

those who wrote it, and in many cases they are not as familiar with the language that the code is written in

as the original writers were. The longer that a person takes to understand the code, the more expensive a

bug fix becomes – not only in terms of the cost of that persons time but also the damage that the bug will

cause to the business of the company while it remains unresolved. In general once a bug is repeatable it is

solvable but the quality of the software will have an effect on the time taken from repetition to solution.

As you can see from the example above part of the issue of software quality is readability. Readability has

a number of aspects –

 Quantity (or volume)

 Layout

 Complexity

You can think about this in terms of books. If I gave you an academic textbook and a children‟s book and

asked you to find a single typographic error in each of them it‟s pretty obvious which will prove to be the

easier task. A children‟s book won‟t be very long, it will have very few words on each page and the number

of different words (the vocabulary) will be very small. You will probably know immediately the correct

spelling of each of the words in the book. Contrast this with an academic textbook which will generally be

fairly long, have very dense type with a large number of words on each page (perhaps with even denser

footnotes at the base of the page). There will also be an extensive vocabulary (you may even need to have a

dictionary handy to find out how the words used are supposed to be spelt).

You can think about software in the same way – a simple accessor method is as complex as a child‟s book.

A method that sets up a number of parameters prior to the use of a particular communications protocol will

be much more complex and reading such a method may require you to understand the API of the protocol.

To do this you may have to consult its documentation (the equivalent of having the dictionary to hand).

Content Copyright © Virtual Machinery 2020. This content cannot be reproduced without permission

Page 6

Presented with ten books we could all pick them up, flick through them and grade them on their

complexity. You could pick a large group of people and ask them to do this exercise and they would all

come out with pretty much the same order.

The same exercise could be performed by showing a group of programmers a set of Java classes and ask

them to grade them on their complexity. Again you would find pretty close agreement on which classes

were most complex.

So we could evaluate basic software quality by eye pretty effectively. The problem is that doing that is slow

and expensive because we need to pay people to do it. We are, however, dealing with the regular syntax of

computer languages – a computer is going to read the code anyway – why don‟t we get the computer to do

the job? And that‟s where the kinds of metrics that we are interested in come in.

But it‟s not just those qualities inherent to the code that matter. We also need to think of the relationship

between the various pieces of code. For example I might ask you to check an academic textbook for

consistency. In this case you would be looking for cases where the text of the book refers to another section

e.g.

„In Section 1 we discussed arithmetic and showed that one plus one is equal to one‟

When you go to Section 1 you see that it states categorically „Of course we all know that one plus one

equals two.‟

Another consistency check might be that I ask you to ensure that any references quoted do indeed back up

the claims of the author.

In each case the more of the references there are the more difficult your task will be because you will have

to read the sections or papers referred to as well in addition to the original text. Even if the referred sections

are in the text, and you have already read them it‟s quite likely that you will have to read them again.

When we write a large piece of object-oriented code – perhaps an application – we will inevitably write a

lot of different classes that will co-operate to achieve the aims of the software. So if I ask a group of

programmers to review a number of pieces of code it is likely that they will view code that has external

relationships with a lot of other classes as more complex than code that contains references to only a few

classes. This is simply because they may well have to understand the referenced classes as well as the class

that references them. Here‟s a simple example. We have a program that makes an external call-

List<String> strings = StringListMaker.getStrings(myObject);
if (strings != null) {
 for (String aString:strings) System.out.println(“Found “+aString;
}

To the getStrings method in the StringListMaker class :

 public static List<String> getStrings(StringContainingObject anObject) {
 List<String> result = new ArrayList<String>();
 if ((anObject != null) && (anObject.getNames() != null)) {
 for (String aString : anObject.getNames()) result.add(aString);
 }
 return result;
}

Reviewing this code you would notice that the check on the „strings‟ variable for a null value after the

external call is redundant. StringListMaker.getStrings always returns a list – even if it puts nothing in it.

Our for loop can cope with an empty list without the check. To make this observation we had to critically

Content Copyright © Virtual Machinery 2020. This content cannot be reproduced without permission

Page 7

examine code in two classes. This was a very simple example but there is still a lot to take in before we see

the inefficiency. One way to look at it is that adding an external call or reference brings all the complexity

of the external item into the calling code. This is why the relationships between pieces of code are

important when judging their complexity.

Some typical metrics

The most commonly used metrics are –

 Lines of Code

 Cyclomatic Complexity

 Halstead Metrics

These are some of the oldest metrics used in software development and they tell us a lot about the quality

of software. Lines of Code tells about the quantity (similar to the length of the book) and Cyclomatic

Complexity tells you how many different paths there are through each piece of code (how difficult the book

is to read). The Halstead Metrics also measure the length and complexity (using different aspects of the

code) as well as measuring the vocabulary of the code. You can find more extensive discussions on Lines

Of Code (http://www.virtualmachinery.com/sidebar1.htm) and the Halstead Metrics

(http://www.virtualmachinery.com/sidebar2.htm).

These three metrics were designed for use in the procedural (as opposed to object-oriented) era. In

the procedural code era a program was usually a single chunk of code consisting of a sequential declaration

of methods (then known as functions and procedures). Code might be divided into „modules‟ which were a

convenience to allow different programmers work on different sections of the code simultaneously. When

the application was compiled all of these modules were combined into a single executable file. Almost

every line was purely functional – exceptions would be the method headers and lines which imported other

modules. Variables generally had global scope or none at all.

It‟s pretty intuitive that a piece of code with 100 lines of code in it is going to be harder to read than one

with 10 lines in it – but do you think that it‟s 10 times as hard? Or 20 times? Or maybe only 5 times? Or

maybe it depends on other factors as well as the quantity? – for example how the code is laid out.

Similarly with Cyclomatic Complexity - this is a measure of how many different possible routes there are

through a piece of code. For example a piece of code where you just have a number of lines of code in

succession has a single path (see the code for the method complexityOfOne below). The only path through

this is Line A  Line B  Line C. By adding a single if statement you create a method that has two paths

through it (see the method complexityOfTwo below). In this case there are two clear alternate paths : Line

A  Line B  Line C (followed if the boolean value addY is true) Line A  Line D (followed if addY is

not true)

public void complexityOfOne(int x, int y) {
 int xsquared = x*x; //Line A
 int value = xsquared+y; //Line B
 System.out.println(“X squared plus Y =”+value); //Line C
}

public void complexityOfTwo(int x, int y, boolean addY) {
 int xsquared = x*x; //Line A
 if (addY) { /
 int value = xsquared+y; //Line B
 System.out.println(“X squared plus Y =”+value); //Line C
 } else {

http://www.virtualmachinery.com/sidebar1.htm
http://www.virtualmachinery.com/sidebar2.htm

Content Copyright © Virtual Machinery 2020. This content cannot be reproduced without permission

Page 8

 System.out.println(“X squared =”+xsquared); //Line D
 }
}

In the object-oriented era a line of code can be a wide variety of things. We still have method headers and

import statements but we now have „non-functional‟ code which contributes to the structure of the

application rather than to its functionality. This means that we need to make decisions about how we treat

these parts of the code when we are calculating our metrics. An example is the Halstead Vocabulary – in

procedural code where all the variables have global scope then no matter how many times myVar appears it

will only make a single contribution to the vocabulary. If I have a Java class MYClass with three methods

method1, method2 and method3 I might declare myVar as an instance variable and I might declare a local

variable myVar in each of methods 1 and 3 and use the instance variable myVar in method 3. How do I

calculate the Halstead Vocabulary in a way that makes sense in this class? There is a more extensive

discussion on this issue (link-here).

There has been a lot of academic discussion about these metrics and their suitability to object-oriented

languages and many suggestions as to how they could be changed to make them useful in this environment.

Other aspects – design and fault prediction
So far our discussion has mainly been about maintainability and while that is important metrics can tell us a

lot more.

Design – the way that our classes have been designed, both on their own and in the way that they interact

within our application, can have a bearing on how efficiently the application works. It can also impact how

much code we have to write- in Object Oriented development is design can replace code. You can think of

design acting like a lever that allows the power of each line of code to be multiplied. As an example of this

inheritance allows us to reduce the amount of code that we have to write by reusing the lines that we have

already written. At a higher level of abstraction design patterns allow us to reuse our design – saving part of

the design task. Over the years one fact in software metrics has remained unchanged – less code means

fewer errors. If good design means less code – either because you have to write less code or because you

can reuse tested and trusted code – then it must surely mean a reduced error count. A number of the metrics

that we will discuss later in the book allow us to assess aspects of our design. An example would be the

Coupling Between Objects (CBO) metric that we mentioned above.

Fault prediction – In recent years a lot of research work has been directed towards using metrics to

predict the weak spots in the coding or design of an application. Again anyone who has programmed for

any length of time has seen this. Every application has a „hot spot‟ for bugs. Usually it is an area where the

specification is complex and fluid and where there is frequent code change. Often the solution in such

circumstances is to redesign and rewrite the code in the area involved

Why are there so many metrics?
When you go out there on the Web trying to find information on metrics one of the things that will strike

you pretty quickly is the number of different metrics available.

There are a few reasons why this shouldn‟t really be surprising -

 History – in 50 years of programming we‟ve accumulated lots of metrics and haven‟t really

thrown any away. Counting the number of bytes in a program was critical up to 30 years ago not

just as a metric but also because of the limited architecture of the machines. We don‟t really count

bytes any more but we still count lines of code. Surprisingly most metrics have survived the

transition from procedural to object-oriented programming. They have also survived the myriad of

languages that the programming community has invented and discarded. It‟s reasonable to argue

Content Copyright © Virtual Machinery 2020. This content cannot be reproduced without permission

Page 9

that the fundamentals of programming have not changed – inside every object there are small

chunks of procedural programming carrying out the functions of the application.

 Changes in programming methodologies and disciplines – Object oriented programming

has introduced more measurable aspects. We now need metrics that can handle the concepts of

class and package. There have also been a number of software lifecycle processes and quality

certifications that have introduced the need for measurement.

 Continuous process of improvement – Individual metrics have been improved over the

years leading to numerous versions of the same metric. LCOM (Lack of Cohesion between

Methods) is an example of this. This frequently leads to confusion when people attempt to

compare two different sets of code unwittingly using two different versions of the same metric.

 Alchemy – everybody thinks that they have discovered the one true metric. Like the alchemists

fruitless struggle I very much doubt there is some magic metric out there that you can apply to

code and divide it all neatly into two piles – one of good code and another of bad. But every

programmer has the right to try and by using JHawk‟s mechanism for creating new metrics you

can join in this as well!

 Social factors – people outside of technology often look it as being a truly scientific endeavour

with each part of the technology chosen purely for it‟s position as the best tool for the job. Like

most human activity it is largely driven by social factors – fashion, „not invented here‟ or most

frighteningly – „we‟ve always used it – I don‟t really know why – personally I think it‟s totally

useless‟.

In JHawk we have tried to provide you with the widest possible range of available metrics. We also provide

you with the ability to create your own metrics and use them in all of the JHawk products. We‟ve made an

initial pre-selection for you of those metrics (see the lists at the end of the document) that we consider most

useful but you can easily activate any of the other provided metrics as you require.

What makes a good metric?
So given the vast choice of metrics available how do you separate the good ones from the bad and how do

you pick the ones that are going to be useful to you. One of the aims of this document is to try and give you

enough knowledge to make those decisions. At the very least a useful metric should have the following

attributes -

 There should be a direct (or inverse) relationship between the value of the metric and some aspect of

the quality of your code e.g. number of arguments to a method, number of methods in a class.

 The measurement should be consistent – it should always give the same answer in the same set of

circumstances.

 It should preferably be visible. In other words you should be able to see the reason why the metric is

outside of the preferred range. If the metric is not visible it will be difficult to fix. For example the

Cyclomatic Complexity metric is based on the number of possible paths through the code. When you

are guided to the class by the high value of the metric you will probably see lots of if statements and

know that by reducing these, e.g. by dividing the method into a number of sub methods, you will have

started to reduce the Cyclomatic Complexity.

It is preferable that a metric has a defined range e.g. between 0 and 1 or 0 and 100. If a metric does not

have a defined range then it can be difficult to decide on an acceptable value. For example – the number of

arguments in a method has a bearing on the complexity of a piece of code – but what is a reasonable upper

value for the number of arguments – is it 3?, is it 5? Or does it depend on particular circumstances?

We can also divide our metrics down into what it is that we want to measure. Lets rank these from least to

most abstract –

 Amount of code written

 Effort expended in coding

Content Copyright © Virtual Machinery 2020. This content cannot be reproduced without permission

Page 10

 Maintainability

 Quality of Code

 Quality of design

The amount of code written is pretty easy – it‟s just the number of lines of code, or statements or

expressions.

The effort probably takes a little more to calculate. It‟s the amount of code plus the overhead of creating

methods, classes and packages. The programmer has to think about how these are partitioned and hopefully

they increase the quality of the code by their design choices.

Maintainability is the volume and complexity of code so contains the measurements we used for amount

and effort. The average size of the methods, classes and packages also affects the maintainability as the

maintainer has to look through less code if the code units are smaller. The presence of useful comments

also adds to the clarity of the code as does the appropriate naming of classes and methods and a coherent

packaging structure. The problem is that while we can measure the number of comment lines it tells us

nothing about their quality – the two sets of comments get the same credit –

(a)

/**

/* Method to open file, check file length is greater than zero and

/* Less than 10Mb. Roll over if greater than 10 Mb

/**

(b)

/**

/* Author: John Smith 2008-Jan-01

/* This Method Copyright: The Big Corp 2008

/**

So we‟re already getting into the difficulty of assessing the quality of things that affect our metrics rather

than just the quantity. The standard Maintainability Index metric included in the JHawk product comes in

two flavours – one of which includes comments in the calculation and one of which does not. If most of

your programmers create sensible comments like the first example above then you might consider

including comments in your calculations – if they are like the second then it‟s not really worth it.

It is sometimes possible to include qualitative measures at „face value‟ in a quantitative measure if you put

in place controls that ensure that value. For example you might review all of your code and as part of that

review programmers might be encouraged to only provide worthwhile comments. If all your code is

preceded by generated comments like the second example above then you might choose to modify the

metric to reduce the number of comment lines to account for the generated ones.

Quality of Code is the next measure and here we have leapt up another level of abstraction. What do we

mean by quality of code? We all know what good code looks like – everything is named in a way that

suggests its function, methods are short, perform a single function and are appropriately commented. But

how can we measure this just by parsing the code? A method can be short and meaningless –

public double doIt(double aThing) {

 return 3.14*(aThing*aThing);

}

- or short and meaningful –

public double calculateCircleArea(double radius) {

 return 3.14*(radius*radius);

}

Content Copyright © Virtual Machinery 2020. This content cannot be reproduced without permission

Page 11

But again we can see that analysing the code will not automatically distinguish between the good and the

bad.

There are personal factors in choosing metrics as well - a good metric is one that you understand. For

example I am happy with a method with 10 lines of code in it because it‟s less than a screen full in the IDE

that I use; I‟m not so happy with one with 40 lines in it because I know it won‟t fit into a single screen full.

This is a good metric for my purposes because I know why I chose it and I can relate the metric result to

my requirements.

Relating metrics to quality
Metrics seldom relate directly to quality. Those metrics which measure size tell us nothing about quality.

They don‟t tell us whether we have a lot of good code or a small amount of bad code. Similarly the

complexity of code doesn‟t relate to its quality – for example the implementation of a sort algorithm might

be done extremely well but it might also be very complex.

The value that these metrics give us is that we understand that in some circumstances the quantity of

something can be an indicator of something bad (or something good). For example a single method with

450 lines of code is almost certainly bad – the code might be fine, but in the context of maintaining the

code or understanding the function of the method we know that this is not a good situation. So we relate the

metric to quality via its context – a class with 450 lines of code might be perfectly acceptable but a method

with 450 lines is not.

Can metrics be counterproductive?
There are three main dangers in using metrics –

 That creating the metrics, and getting the metrics to look „right‟ start to consume more effort than

writing the code. There are more important things to put in place than metrics measurement – a

tight specification process, testing (unit, integration and system) and a defined, repeatable and

automated build process for example.

 That the measurement of metrics influences programmer behaviour in a way that is detrimental to

the process of producing the software.

 Taking the view that just doing the measurement is the important thing – measurement is useless

unless the results are analysed and sensible action taken on foot of these results.

Content Copyright © Virtual Machinery 2020. This content cannot be reproduced without permission

Page 12

Metrics with JHawk

A sensible approach to using metrics

Like any other powerful tool JHawk produces a lot of information. As you gain experience with JHawk you

will learn how to use this information to assess and improve the quality of your code. The biggest problem

is how to start on this process. The answer is „simply‟. Choose one or two key metrics to get you started –

if you want you can read our extensive section on metrics later in this document and after you have read

that make an informed decision on which metrics you feel best suit your purposes. This is fine if you are

prepared to take that time right at the beginning but most of us are in a hurry to get started – we‟ve paid for

the tool and we want to start getting our moneys worth.

At Virtual Machinery we realise this so that out of the box JHawk has only a few metrics enabled. You can

find these in the list at the end of this document. By using the preferences interface you can modify this list

to suit your requirements.

We have also enabled the following metrics on the dashboard –

At System Level –

 AVCC (at Package level – the average Cyclomatic complexity of all the methods in that

package)

 AVCC (at Class level – the average Cyclomatic complexity of all the methods in that class)

 COMP (at Method level – the cyclomatic complexity of individual methods)

At Package Level -

 AVCC (at Class level – the average Cyclomatic complexity of all the methods in that class)

 COMP (at Method level – the cyclomatic complexity of individual methods)

At Class Level -

 COMP (at Method level – the cyclomatic complexity of individual methods)

As you can see all of these metrics relate to Cyclomatic Complexity. Cyclomatic complexity is a good

place to start as it satisfies many of the criteria of a good metric. So what is the best approach to using the

information on the dashboard? First try and find the most complex methods in the system. Methods with a

complexity greater than 10 should be looked at first. If there are too many of these then look at the fifty

worst methods first. Look at the code in these methods and see why they have such high values for

complexity – perhaps they have many lines of code – perhaps they are very complex – for example with

large switch statements. The next step is to see which of these methods can be divided into a number of

smaller methods. It may not always be possible to subdivide a method – for example if it contains a single

very large switch statement which cannot be subdivided. Sometimes it may not be obvious how to

subdivide a method and sometimes subdivision is made difficult by a poor architectural pattern.

When you have analysed your fifty methods record your decisions on each. Look at those which you have

decided are candidates for rewriting. Are there common themes (or anti-patterns) in the way that these

methods have been written? Are they all located in one area (e.g. a particular class or package) of the

system? Were they perhaps all written by the one person/team? The answers to these questions may well

give you clues as to where to look for other instances of poor coding practice that are reducing the quality

of your code.

TIP: If you find methods that you feel breach a particular metric limit, but there is a justification for them

doing so, then put a comment in the code stating why you think the breach is acceptable. It will save you

time the next time this code comes up for review.

Content Copyright © Virtual Machinery 2020. This content cannot be reproduced without permission

Page 13

TIP: If you know a method needs to be rewritten but realise that other changes will need to be done first

(perhaps to the architecture) then put a TODO: in the code so that you will come back to it later.

Automating the process

You can use the command line version of JHawk to automate the production of your metrics. If you look at

the documentation for the Command Line version you will find examples of how to do this and how to

create batch processes to carry out the analysis of a large number of files at once. There is also a JHawk

Ant task which you can use to easily incorporate JHawk metrics into other Ant processes.

Using Filters

Since version 6.1 JHawk has provided filters. These can be used in combination with the warning and

danger levels that can be configured on a per metric basis to filter out metrics that breach the warning and

/or danger levels. Filters can be created and used „on –the-fly‟ in the Standalone version. Filters can also be

saved to files in both the Standalone version of JHawk. These filters can then be re-used in the Standalone

and Command Line versions of JHawk – see the relevant user documents for more details on how to use

filters.

Using the JHawk Data Viewer – how your code quality is changing over
time

The JHawk Data Viewer is provided with the professional license. It is an application that allows you to

view changes in the quality of your code over time. It uses the basic XML files generated by JHawk. To

use Data Viewer you need to create a basic XML file for each snapshot of your code that you want to

analyze. You then load these into JHawk Data Viewer and after analysis you can view your data in a

number of different ways. You can also export your data to a format that can be viewed using the Google

Visualization API. Again you can use the command line jar to streamline this process and there is a

description of how best to do this in the documentation for the Data Viewer.

Content Copyright © Virtual Machinery 2020. This content cannot be reproduced without permission

Page 14

Metrics defined in JHawk
Metrics are defined at four levels System, Package, Class and Method. Only a subset of the

metrics are active initially. You can use the Preferences mechanism to activate other metrics as

you need them. The first sections here show the metrics enabled „out of the box‟ at each level.

The subsequent sections list all of the metrics available and provide full definitions for each of the

metrics.

System level metrics enabled initially

Metric Code Description

NAME Name of System

NOPK Number of Packages in the system

NOS Number of Statements in the System

AVCC Average Complexity of all the methods in the System

HBUG Cumulative Halstead Bugs of all the components of the system

HEFF Cumulative Halstead Effort of all the components of the system

MI Maintainability Index (including comments)

CCML Total number of comment lines in the system

NLOC Total number of lines of code in the system

Package level metrics enabled initially

Metric Code Description

NAME Name of Package

NOCL Number of Classes in Package

NOS Number of statements in Package

AVCC Average Cyclomatic Complexity

HBUG Cumulative Halstead Bugs of all the components in the package

HEFF Cumulative Halstead Effort of all the components in the
package

HLTH Cumulative Halstead Length of all the components in the
package

HVOL Cumulative Halstead Volume of all the components in the
package

MI Maintainability Index (including comments)

CCML Total number of comment lines in the package

NLOC Total number of lines of code in the package

Content Copyright © Virtual Machinery 2020. This content cannot be reproduced without permission

Page 15

Class level metrics enabled initially

Metric Code Description

NAME Name of class

NOMT Number of methods in class

LCOM Lack of Cohesion of Methods

AVCC Average Cyclomatic Complexity of all the methods in the class
(TCC/NOMT)

NOS Total Number of Java Statements in class

HBUG Cumulative Halstead Bugs of all the components in the class

HEFF Cumulative Halstead Effort of all the components in the class

UWCS Unweighted class size

INST Number of instance variables (or attributes) defined in this class

PACK Number of packages imported by this class

RFC Response for class

CBO Coupling Between Objects

MI Maintainability Index (including comments)

CCML Total number of comment lines in the class

NLOC Total number of Lines of Code in the class

Method level metrics enabled initially

Metric Code Description

NAME Name of method

COMP Cyclomatic Complexity

NOCL Number of comment Lines

NOS Number of Java Statements

HLTH Halstead Length of the method

HVOC Halstead Vocabulary of the method

HEFF Halstead Effort for the method

HBUG Estimated Halstead Bugs in the method

CREF Number of classes referenced in the method

XMET Number of calls to methods that are not defined in the class of
the method.

LMET Number of calls to local methods i.e. methods that are defined
in the class of the method.

NLOC Number of Lines of Code in the method

Content Copyright © Virtual Machinery 2020. This content cannot be reproduced without permission

Page 16

System level metrics (all)

Metric

Code

Description

NAME Name of System

NOPK Number of Packages in the system

NOCL Total Number of Classes in the System

NOMT Total Number of Methods in the System

NOS Number of Statements in the System. This is a total of the number of Java statements for
each of the packages defined in the system. See definition of Java statements in „Method
level Metrics (all)‟ table.

TCC Total Cyclomatic Complexity of all the methods in the System

AVCC Average Complexity of all the methods in the System

TCC/NOMT

In the standard jhawk properties file the warning level is set to 10 and the danger level to
15.

HBUG Cumulative Halstead Bugs of all the methods in the System (see definition of Halstead
Bugs in „Method level Metrics (all)‟ table)

HEFF Cumulative Halstead Effort of all the components in the System (see definition of
Halstead Effort in „Method level Metrics (all)‟ table)

HLTH Cumulative Halstead Length of all the components in the System (see definition of
Halstead Length in „Method level Metrics (all)‟ table)

HVOL Cumulative Halstead Volume of all the components in the System (see definition of
Halstead Volume in „Method level Metrics (all)‟ table)

MI Maintainability Index (including comments). See definition of MI in „Class level Metrics (all)‟
table. In the standard jhawk properties file the warning level is set to 85 and the danger
level to 65.

MINC Maintainability index (No comments). See definition of MINC in „Class level Metrics (all)‟
table.

CCOM Total Number of Comments in the system. This is a total of the number of comments for
each of the packages defined in the system.

CCML Total number of comment lines in the system. This is a total of the number of comment
lines for each of the packages defined in the system.

NLOC Total number of lines of code in the system. This is a total of the number of lines of code
for each of the packages defined in the system.

Content Copyright © Virtual Machinery 2020. This content cannot be reproduced without permission

Page 17

Package level metrics (all)

Metric

Code

Description

ABST The Abstractness metric is calculated as follows -

(numAbst + numInt) / NOCL

Where numAbst is the number of abstract classes defined in the package., numInt is the
number of interfaces defined in the package and NOCL is the total number of classes
defined in the package.

Abstractness is the ratio between the number of abstract classes and the total
number of classes in a package. A value of 0 means the package is fully
concrete, 1 means that it is fully abstract. In some cases the level of abstraction may be
intentional so the value is not an indication of quality but where the result conflicts with the
designers intention (e.g. a package called myco.myapp.interfaces with a low abstraction
value might ring alarm bells).

AVCC Average Cyclomatic Complexity of all the methods in the package (see definition of
Cyclomatic Complexity in „Method level Metrics (all)‟ table). Calculated using the Total
Cyclomatic complexity and the number of methods –

 TCC/NOMT

In the standard JHawk properties file the warning level is set to 10 and the danger level to
15.

CCOM Total Number of Comments in the package. This is a total of the number of comments at
package level plus a total of the number of comments for each of the classes defined in
the package.

CCML Total number of comment lines in the package. This is a total of the number of comment
lines at package level plus a total of the number of comment lines for each of the classes
defined in the package.

DIST The Distance metric is calculated from the Abstractness (ABST) and Instability (INST)
metrics –

abs(1-(ABST+INST))

A package should be balanced between abstractness and instability, i.e., somewhere
between abstract and stable or concrete and unstable. Stable packages should also be
abstract packages (A = 1 and I = 0) while unstable packages should be concrete (A = 0
and I = 1).

FIN Fan In (or Afferent Coupling). This is calculated as the number of packages in the code
analyzed by JHawk that reference this package.

FOUT Fan Out (or Efferent Coupling) This is calculated as the number of packages in the code
analyzed by JHawk that this package references.

HBUG Cumulative Halstead Bugs of all the methods in the Package (see definition of Halstead
Bugs in „Method level Metrics (all)‟ table)

HEFF Cumulative Halstead Effort of all the components in the Package (see definition of
Halstead Effort in „Method level Metrics (all)‟ table)

HLTH Cumulative Halstead Length of all the components in the Package (see definition of
Halstead Length in „Method level Metrics (all)‟ table)

HVOL Cumulative Halstead Volume of all the components in the Package (see definition of
Halstead Volume in „Method level Metrics (all)‟ table)

Content Copyright © Virtual Machinery 2020. This content cannot be reproduced without permission

Page 18

INST The Instability metric is calculated from the Fan In and Fan Out metric –

FOUT/(FOUT + FIN)

Instability is a measure of the potential impact of a change related to the package. It‟s
value can be between 0 and 1. A completely stable package (value of INST is zero) can
still change internally but should not as it will have an impact on dependent packages. An
completely unstable package (INST value of 1) can change internally without
consequences on other packages.

MI Maintainability Index (including comments). See definition of MI in „Class level Metrics (all)‟
table. In the standard jhawk properties file the warning level is set to 85 and the danger
level to 65.

MINC Maintainability index (No comments). See definition of MINC in „Class level Metrics (all)‟
table.

MAXCC Maximum Cyclomatic Complexity – the highest value for Cyclomatic Complexity displayed
by any method in the Package

NAME Name of Package

NOCL Number of Classes in Package

NOMT Number of Methods in Package

NOS Number of Java statements in Package. This is a total of the number of Java statements
in the package an the number of Java Statements for each of the classes defined in the
package. See definition of Java statements in „Method level Metrics (all)‟ table.

NLOC Total number of lines of code in the package. This is a total of the number of lines of code
at package level plus a total of the number of lines of code for each of the classes defined
in the package.

RVF Review Factor (see section on Review Factor in this document) A value of 100 or more
indicates that this package should be reviewed.

TCC Total Cyclomatic Complexity – this is the total cyclomatic complexity of all the methods in
the Package. See definition of Cyclomatic Complexity in „Method level Metrics (all)‟ table.

Content Copyright © Virtual Machinery 2020. This content cannot be reproduced without permission

Page 19

Class level metrics (all)

Metric

Code

Description

AVCC Average Cyclomatic Complexity of all the methods in the class (see definition of
Cyclomatic Complexity in „Method level Metrics (all)‟ table). Calculated using the Total
Cyclomatic complexity and the number of methods –

 TCC/NOMT
In the standard jhawk properties file the warning level is set to 10 and the danger level to
15.

CCML Total number of comment lines in the class. This is a total of the number of comment lines
at class level plus a total of the number of comment lines for each of the methods defined
in the class.

CCOM Total Number of Comments in the class. This is a total of the number of comments at
class level plus a total of the number of comments for each of the methods defined in the
class.

CBO Coupling Between Objects. Two calculate this metric two sets of classes are created. (1)
Those classes in the code analyzed by JHawk that reference this class. (2) those classes
in the code analyzed by JHawk that this class references.
From the intersection of these two sets a third set is created of the classes that this Class
references AND that reference this class. The size of this set is the value of the CBO
metric.

A high CBO value for a class suggests that it will be difficult to reuse as it indicates that
the class is too dependent on other class.

COH Cohesion. The Cohesion metric is calculated as follows –

NumRefs/(NOMT * INST)

where numRefs is the sum of the number of attribute references in each of the methods in
the class. Higher values are better.

DIT Depth of inheritance tree for this class. This is calculated in the same way as the number
of superclasses (NSUP).

EXT Number of external method calls made from the class i.e. the number of calls made to
methods in other classes (including classes that are not in the group of classes under
analysis e.g. classes in the JDK, classes in third party packages). A higher number of
external method calls increases that classes dependence on other classes making it more
difficult to maintain.

FIN Fan In (or Afferent Coupling). This is calculated as the number of classes in the code
analyzed by JHawk that reference this class. A high value can indicate that a class is
doing too much and may be a candidate for refactoring.

FOUT Fan Out (or Efferent Coupling) This is calculated as the number of classes in the code
analyzed by JHawk that this class references. A high value can indicate that a class is
doing too much and may be a candidate for refactoring. Values over 50 are generally
viewed to be bad.

HBUG Cumulative Halstead Bugs of all the methods in the class (see definition of Halstead Bugs
in „Method level Metrics (all)‟ table)

HEFF Cumulative Halstead Effort of all the components in the class (see definition of Halstead
Effort in „Method level Metrics (all)‟ table)

HIER Number of methods called that are defined in the hierarchy of the class.

HLTH Cumulative Halstead Length of all the components in the class (see definition of Halstead
Length in „Method level Metrics (all)‟ table)

Content Copyright © Virtual Machinery 2020. This content cannot be reproduced without permission

Page 20

HVOL Cumulative Halstead Volume of all the components in the class (see definition of
Halstead Volume in „Method level Metrics (all)‟ table)

INST Number of instance variables (or attributes) defined in this class. A high number of
instance variables can indicate a class that has too many responsibilities. Mitigating
factors would include the definition of constants (providing they constitute a coherent
group).

INTR Number of interfaces implemented by this class

MOD Number of modifiers (public, protected etc defined for this class)

LCOM Lack of Cohesion of Methods. This is calculated according to the formula defined by
Henderson-Sellars. This calculation is also known as LCOM5 by the Fraunhofer institute (
see L. C. Briand, J. W. Daly, and J. Wüst. A Unified Framework for Cohesion Measurement in

Object-Oriented Systems. Empirical Software Engineering: An International Journal, 3(1):65–117,

1998)

 The calculation is –

((1/INST) * (numRefs - NOMT))/ (1-NOMT))

Where numRefs is the sum of the number of attribute references in each of the methods in
the class, INST is the number of instance variables defined in the class and NOMT is the
number of methods in the class. This version of LCOM has values in the range 0 to 2.
Lower values are better – any value over 1 should be viewed as an indicator of poor code.

LCOM2 The LCOM2 metric is calculated by keeping a count of the number of method pairs that
share instance variable references and a separate count of those that do not share
instance variable references. The number of those that have instance variable references
in common is subtracted from those that do have none in common. If the value returned is
negative it is set to zero. Values of LCOM2 closer to zero are considered to be better. (see

L. C. Briand, J. W. Daly, and J. Wüst. A Unified Framework for Cohesion Measurement in Object-

Oriented Systems. Empirical Software Engineering: An International Journal, 3(1):65–117, 1998)

LMC Number of Local method calls i.e. calls to methods that are defined in this class.

MAXCC Maximum Cyclomatic Complexity of any method in the class (see definition of Cyclomatic
Complexity in „Method level Metrics (all)‟ table)

MI Maintainability Index (including comments). This is a complex calculation involving a
number of different metrics –

EffortPart = 3.42 * log(HEFF/NOMT)
CyclomaticPart = 0.23 * (TCC/NOMT)
LinesPart = 16.2 * log(NOS/NOMT)
CommentPart = 50 * sin(sqrt(2.46*(CCOM/NOMT)))

Note here that

1. the log value used is the natural log
2. the sin value used is measured in radians

We then combine the parts to create the MI value. –

171 – effortPart – cyclomaticPart – linesPart + commentPart

Classes with a MI less than 65 are difficult to maintain, modules between 65 and 85 have
reasonable maintainability and those with MI above 85 have excellent maintainability. In
the standard jhawk properties file the warning level is set to 85 and the danger level to 65.

MINC Maintainability index (No comments). This is calculated in the same way as MI above but
the calculation does not include the commentPart.

MPC Message Passing Coupling – the total number of external methods called by all the
methods in the class.

Content Copyright © Virtual Machinery 2020. This content cannot be reproduced without permission

Page 21

NAME Name of class

NCO Number of commands (number of methods in the class that do not return a value)

NLOC Total number of Lines of Code in the class. This is a total of the number of lines of code at
class level plus a total of the number of lines of code for each of the methods defined in
the class.

NOMT Number of methods in class. A high number of methods in a class can be an indicator that
the class is doing too much.

NOS Total Number of Java Statements in class. This is a total of the statements at class level
plus a total of the number of Java statements for each of the methods defined in the class.
See definition of Java statements in „Method level Metrics (all)‟ table

NQU Number of queries (number of methods in the class that return a value)

NSUP Number of superclasses to this class. If this is a class (rather than an interface) then the
number of superclasses is all the classes above this class in the hierarchy (including the
Object class).
If this is an interface then it is a count of all the interfaces that this interface extends plus,
recursively, all the interfaces that these extend.

NSUB Number of subclasses of this class. All the classes that have this class in their hierarchy.
This is calculated recursively down to the lowest classes in the hierarchy.

PACK Number of packages imported by this class. A class that imports a large number of
packages becomes more difficult to maintain due to these interdependencies.

R-R Reuse ratio. This is calculated from the number of superclasses excluding Object divided
by the total of the classes in the inheritance tree (including this class) –

(NSUP-1)/((NSUP-1)+NSUB+1)

RVF Review Factor (see section on Review Factor in this document) A value of 100 or more
indicates that this class should be reviewed.

S-R Specialization Ratio. This is calculated from the number of subclasses divided by the
number of superclasses excluding Object -

NSUB/(NSUP-1)

RFC Response for class is calculated by totalling the number of methods declared in the class
and the number of methods external to the class called from code within the class. i.e –

NOMT +EXT

A high value for RFC indicates a class that is more complex and therefore more difficult to
test and maintain.

SIX The SIX (Specialization Index) metric is calculated as follows -

(nsomt*DIT)/(nsomt+NOMT+ inhmt)

Where nsomt is the number of non-static overridden methods, DIT is the depth of
inheritance tree (defined elsewhere in this table), NOMT is the number of methods defined
in the class and inhmt is the number of methods that this class inherits from other classes.

The Specialization Index metric measures the extent to which subclasses override
their ancestors classes. A higher value of the SIX metric suggests that a class is more
difficult to maintain. It is suggested as an indicator of classes that may require further
investigation.

SUPER Name of Superclass

TCC Total Cyclomatic Complexity of all the methods in the class (see definition of Cyclomatic
Complexity in „Method level Metrics (all)‟ table)

UWCS Unweighted class size. This is calculated by totalling the number of instance variables

Content Copyright © Virtual Machinery 2020. This content cannot be reproduced without permission

Page 22

defined in the class and the number of methods defined in the class i.e.

NOMT + INST

A value for UWCS over 100 is viewed as indicator of poor code.

Content Copyright © Virtual Machinery 2020. This content cannot be reproduced without permission

Page 23

Method level metrics (all)

Metric

Code

Description

CAST Number of class casts in the method

COMP Cyclomatic Complexity. This is calculated from the number of logical branch points in the
method. The method itself is counted as 1 logical branch point. The ?, if, switch, for, while
and catch operators count as logical branch points. Within a switch statement each
occurrence of the break keyword is treated as a logical branch point. A Cyclomatic
Complexity over 10 is viewed as an indicator of poor code. In the initial jhawk.properties file
the „Warning‟ level is set to 10 and the „Danger‟ level to 15.

CREF Number of different classes referenced in the method. This will include classes that are
referenced in variable declarations, argument types, casts, exceptions thrown and caught,
instantiations of variables through the new operator and direct references to class methods
and variables. The CREF value includes both class and interface references. A method with
a high number of class references can suggest that a method is doing too much.

EXCR Number of exceptions referenced by this method. This figure does not include the
exceptions referenced.

EXCT Number of exceptions thrown by this method. These are the thrown exceptions identified in
the method signature

HBUG Estimated Halstead Bugs in the method. This is calculated by dividing the Halstead Volume
(HVOL) by 3000.

HDIF The Halstead Difficulty of a method is an indicator of method complexity. It is calculated
from the number of unique operators (UOR), number of operands (NAND) and the number
of unique operands (UAND) using the formula –

(UOR/2)* (NAND/UAND)

HEFF The Halstead Effort for the method is an indicator of the amount of time that it will take a
programmer to implement the method. It is calculated from the Halstead volume (HVOL)
and the Halstead Difficulty (HDIF) using the formula –

HVOL*HDIF

HLTH The Halstead Length of the method. This is the sum of the number of operators plus the
number of operands. It is an indicator of method size.

HVOC The Halstead Vocabulary of the method. This is the sum of the number of unique operators
plus the number of unique operands. It is an indicator of method complexity.

HVOL The Halstead Volume of a method is an indicator of method size. It is calculated from the
Halstead vocabulary (HVOC) and the Halstead Length (HLTH) using the formula –

HLTH * log2(HVOC)

LMET Number of calls to local methods i.e. methods that are defined in the class of the method. A
high number of method calls can be an indicator that the method is doing too much.

LOOP Number of loops in the method. Loops are indicated by thefor and while operators.

MDN Maximum Depth of Nesting. This is the depth of the deepest nested loop in a method. A
Maximum Depth of Nesting of 4 or greater is viewed as an indicator of a method that is
overly complex, difficult to test and that should be split into sub-methods. In the initial
jhawk.properties file the „Warning‟ level is set to 4 and the „Danger‟ level to 6.

MOD Number of modifiers (public, static, protected) etc in the method declaration

NAME Name of method

NAND Number of operands in the method. An operand is a Java token that can have operations
carried out on it by other Java tokens (called operators – see above). Operands include
variables, numeric and string literals, special variables such as true, false, null, void, super
and this, classes and primitive types and methods.

Content Copyright © Virtual Machinery 2020. This content cannot be reproduced without permission

Page 24

NEXP Number of Java Expressions in the method. A Java expression is a code fragment that
evaluates to a single value e.g. var1 * var2 or “FIRST “+” STRING”.

NLOC Number of Lines of Code in the method. A line of code is any non-blank line in a code file
that is not a comment. A line of code with an end of line comment will be counted as a line
of code and a comment.

NOA Number of arguments in method signature. A very large number of arguments can suggest
that a method is doing too much.

NOC Number of comments. This is the number of discrete comments in the code. I.e. a multi-line
comment will be counted as one comment.

NOCL Number of comment Lines. This is the number of lines of comments in the code including
the start and end tokens for the comments if these are on separate lines. An end of line
comment on a line that also includes code will be counted as a comment line (it will also be
counted as a line of code).

NOPR Number of operators in the method. An operator is a Java token that is used to carry out an
operation on another Java token (called an operand – see below). Examples of operators
would be the arithmetic operators (+, -, *, / etc) and logical operators (&&, || , ! etc). Java
keywords such as for and while are also operators.

NOS Number of Java statements in the method. A Java statement is defined as a series of Java
tokens terminated by a semi-colon.

TDN Total Depth of Nesting. This is a total of the depth of nesting of all the loops in a method.

VDEC Number of variables declared in the method. A very large number of variables declared can
suggest that a method is doing too much.

VREF Number of variable references in the method. This is the total number of references i.e. if
var1 is referred to 3 times and var2 is referred to 4 times the value of VREF is 7. A very
large number of variable references can suggest that a method is doing too much.

XMET Number of calls to methods that are not defined in the class of the method. A high number
of external calls will increase the dependence of the method (and hence its class) on other
classes, making it more difficult to maintain the class. It can also be an indicator that the
method is doing too much.

Content Copyright © Virtual Machinery 2020. This content cannot be reproduced without permission

Page 25

Using the Review Factor Metric
We have introduced the Review Factor metric as a means to allow our customers to develop metrics which

can help them decide which code might need to be peer reviewed before being accepted into the main body

of code. This can be useful when assessing the quality of legacy code or of code components created by an

external source.

It is an implementation of the philosophy outlined in our discussion document – „How can I find out which

code needs to be reviewed?‟- http://www.virtualmachinery.com/sidebar7.htm.

The metric is based on how assessing easy a piece of code is to read or understand. Code that is trivial

(such as accessor methods) or that has little complexity is assumed to be less likely to be prone to error.

How the Review Factor Metric works

At each level a maximum review factor is defined. A number of criteria are defined with penalty values for

each violation and a maximum value for the total of all violations. If

Package Level

At the package level the review factor for each class in the package is calculated. If one or more classes in

the package exceed the maximum review factor for the class then the package is marked for review by

returning a value of 100 plus the number of classes that have exceeded the class level maximum review

factor

Class Level

At the class level the maximum review factor is set to 100.

Factor Value Notes

class.review.factor.max 100

class.iv.max 30 Maximum value for instance variables

class.iv.mult 1 Multiple per instance variable

class.ivconstant.mult 0 Multiple where instance variable is a constant

class.countablemethods.max 10 Maximum value for countable methods

class.countablemethods.mult 0.5 Multiple for countable methods

Each instance variable is counted by adding the appropriate multiple (class.iv.mult for an ordinary instance

variable, class.ivconstant.mult for a constant) to a running total. If the maximum value (class.iv.max) is

exceeded then the maximum review factor (class.review.factor.max) is returned and no further processing

of this class takes place – i.e. it is viewed as being a candidate for review.

Each method in the class is then processed as described in the method section below. If a method violates

any of the following conditions then the class will be viewed as being a candidate for review. The score

returned will be the class.review.factor.max plus a value of 1 for each countable method (JHawk treats

countable methods as those that are not possible accessors. It defines accessor methods as those that start

with “get”, “set” or “is” followed by an instance variable name) that violates one of these constraints. So, in

the case of the default values, if you receive a return value of 103 this will mean that three methods have

violated at least one of the conditions and rendered the class a candidate for review. :

 Maximum cyclomatic complexity (method.cc.max)

 Maximum number of lines of code (method.loc.max) exceeded

 Maximum method review factor(method.review.factor.max) returned

http://www.virtualmachinery.com/sidebar7.htm

Content Copyright © Virtual Machinery 2020. This content cannot be reproduced without permission

Page 26

For methods that do not violate any of these conditions a review value is created using the metrics defined

at method level. The review values for each method are totalled and this is divided by the number of

countable methods to give an average review value for the class.

In the final step we the number of countable methods and multiply this by the appropriate multiple

(class.countablemethods.mult) – if this value exceeds the maximum (class.countablemethods.max) then the

maximum value is used. This value is then added to the average review value for the class.

Method Level

At method level the following factors are used:

Factor Valu
e

Notes

method.review.factor.max 100 Maximum value for method review

method.cc.max 15 Maximum value for cyclomatic complexity.
Exceeding this will cause the class to be
reviewed

Method.cc.penaltylevel 5 Exceeding this cyclomatic complexity value will
cause method.cc.penalty to be added to the
method review factor

Method.cc.penalty 40 Penalty for exceeding method.cc.penaltylevel

method.numargs.penaltylevel 5 Exceeding this number of arguments will cause
method.numargs.penalty to be added to the
method review factor

method.numargs.penalty 40 Penalty for exceeding
method.numargs.penaltylevel

method.vardecl.penaltylevel 5 Exceeding this number of variable declarations
will cause method.vardecl.penalty to be added
to the method review factor

method.vardecl.penalty 40 Penalty for exceeding
method.vardecl.penaltylevel

method.casts.multiple 1 Multiple for casts

method.casts.penalty.max 10 Maximum penalty for exceeding number of
casts times method.casts.multiple

method.loc.max 100 Maximum lines of code in a method. Exceeding
this value means that the class containing the
method will be marked for review

method.loc.multiple 0.5 Multiple per line of code

method.loc.penalty.level 50 Level at which lines of code start to be counted

method.loc.penalty.max 24 Maximum penalty which can be applied

method.extmethods.multiple 0 Multiple for each reference to an external
method

method.extmethods.penalty.level 5 Level at which references to external methods
start to be counted

method.extmethods.penalty.max 5 Maximum penalty which can be applied

method.expressiondensity.multiple 1 Multiple to be used when calculating if
method.expressiondensity.penalty is to be
applied.

Content Copyright © Virtual Machinery 2020. This content cannot be reproduced without permission

Page 27

method.expressiondensity.penalty.level 2 Level above which the expression density
multiplied by
method.expressiondensity.multiple will incur
the method.expressiondensity.penalty

method.expressiondensity.penalty 40 Penalty applied if the expression density times
method.expressiondensity.multiple exceeds
the method.expressiondensity.penalty.level

method.samepackageref.multiple 1 Multiple to be applied to references to classes
in the same package

method.samepackageref.penalty.max 5 Maximum penalty for numbers of references
to classes in the same package

method.otherpackageref.multiple 1 Multiple to be applied to references to classes
in other packages

method.otherpackageref.penalty.max 10 Maximum penalty for numbers of references
to classes in other packages

method.interfaceref.multiple 1 Multiple to be applied to references to
interfaces

method.interfaceref.penalty.max 5 Maximum penalty for numbers of references
to interfaces

method.javalibref.multiple 1 Multiple to be applied to references to classes
in the java libraries

method.javalibref.penalty.max 5 Maximum penalty for numbers of references
to classes java libraries

method.thirdpartypackageref.multiple 2 Multiple to be applied to references to classes
in third party libraries

method.thirdpartypackageref.penalty.max 10 Maximum penalty for numbers of references
to classes in third party libraries

There is a common theme in these values where a multiple and a max value are defined. We can call this

the standard penalty calculation – this is the minimum of the number of items that meet the criteria times

the multiple, and the maximum. So if there are 20 items, the multiple is 1 and the maximum is 10 the value

10 will be returned. If there are 9 items, the multiple is 1 and the maximum is 10 the value 9 will be

returned.

In some cases a level is also defined – this is a level after which we apply the multiple. i.e. number of items

– penalty level times multiple. So if there are 20 items, the penalty level is 5, the multiple is 2 and the

maximum is 50 the value 30 will be returned ((20-5)*2). As before if the maximum is exceeded the

maximum will be returned. If no multiple is defined the multiple is assumed to be 1.

Cyclomatic complexity – if the cyclomatic complexity exceeds the penalty level then the penalty is

applied

Number of Arguments– if the number of arguments exceeds the penalty level then the penalty is applied

Variable declarations – if the number of variable declarations exceeds the penalty level then the penalty is

applied

Casts - The penalty applied is the maximum of the number of casts times the multiple or the maximum

penalty

Lines of code – the penalty is calculated from the number of lines of code less the penalty level times the

multiple. If the value exceeds the maximum penalty then the maximum penalty is used.

Expression density – The expression density is calculated by dividing the number of expressions by the

number of statements. This is then multiplied by the expression density multiple. If the value exceeds the

maximum penalty then the maximum penalty is used.

Content Copyright © Virtual Machinery 2020. This content cannot be reproduced without permission

Page 28

External method references - the penalty is calculated from the number of external method references less

the penalty level times the multiple. If the value exceeds the maximum penalty then the maximum penalty

is used.

External class references – The external class references are divided into different categories :

 Classes in the same package

 Classes in another package included in the analysis set

 References to interfaces

 Classes in one of the Java libraries (package name starts with “java.” or “javax.”)

 Classes in another third party library
References can only be in one of these categories. In each case the review factor is updated using the

standard penalty calculation described above.

The method review factor is created by adding up all the penalties applied to the method. If the penalties

exceed the maximum method review factor value then the maximum method review factor will be returned.

Modifying values to be used in the Review Factor metrics

Any of the values can be modified by changing the corresponding values in the reviewfactor.properties file.

The initial file contains the default values. You can adjust the values to suit your own requirements.

If you wish to remove a particular aspect from the calculations then the simplest approach is reduce the

multiple to zero (if there is a multiple involved) or to set the penalty to zero.

If you want to modify the values used in the Review Factor metrics a good approach is to take a known

body of code and separate it into code that you would feel happy leaving out of a review and code that you

think should be reviewed. Run the analysis of your code using the default values of the Review Factor and

look at which pieces of code fall on either side of the line and see if that matches your original opinion.

Using the values for other metrics produced by JHawk you can start to adjust the factors contributing to the

Review Factor accordingly. For example in the data below we can see two classes (highlighted on the

screenshot below) - „Messages‟ and „StringVariableManager‟. „Messages‟ has a review factor of 100 and

yet doesn‟t seem very „busy‟ compared to „StringVariableManager‟ – the main thing separating them is the

number of instance variables, and when we look at the criteria in „reviewfactor.properties‟ we see that the

maximum value for the instance variables calculation is 30 and the multiple is 1 (but it is zero for

constants). We have a couple of potential strategies here if we want to take this class out of the review

category –

 If we believe that the code is correct we can either increase the maximum value or we

can decrease the multiple

 If we believe that the code should be improved and that we should create the instance

variables as constants then we could change the code to make them constants - this

would mean that they would not count towards the instance variable penalty.

Content Copyright © Virtual Machinery 2020. This content cannot be reproduced without permission

Page 29

If we take the first approach and increase the allowable penalty to 60 (rather than 30) then we can see that

Messages is no longer over the review threshold (neither is „Internal Platform‟ – which also exceeded the

instance variable limit) :-

Looking at the class Messages it can be seen that the instance variables, although static, are in fact

unpopulated and so the class could not be changed without affecting its functionality.

The Review Factor metric is an experimental metric – we have provided the code for the metric at both

package and class level in the appendices to this document. This will show you how we have implemented

the metric and will help you if you want to modify this metric or to use it as a basis for your own metric.

You will also find the document „JHawk6CreateMetric‟ (included in the JHawk documentation) useful as it

contains a complete list of the interface calls available for use in customised metrics.

