Building and Evaluating Theories
in Software Engineering

Daniel Méndez

www.mendezfe.org

mendezfe

Ground rule

Whenever you have questions / remarks,
please don’t ask Google , but

share them with the whole group.

Frequently encountered prejudice

“Our inability to carry out truly scientific experiments and
surveys [...] will yield anecdotes of limited value. Empirical
studies should only be used to confirm what works in theory [...]”

“Only quantitative data is real data.”

At the same time, we often see studies like this

Research Question: Which car has the best driving performangs?

Emp S
H_0: There is no difference. Plrica]

20 people without a driving licence participate.
They are taught to drive in a lecture of 2 hours.

Results: The BMW is significantly better than the Volvo (p<tC.o&

Adopted from: Dag LK. Sjoberg, Keynote at the International Conference on Product-Focused SW Process Improvement 2016, Trondheim, Norway.
Image sources: Company websites

Key Takeaways

rch methods have
over time, th 1 femp icism™* not

rzpw bmpirical research is the backbone of every
“ | scientific discipline.

Theory building and evaluation allow us to
move forward from paradigmatic stage of an
engineering discipline to a scientific one.

(Empirical) methods — where do they belong?

Every research method has its place in a larger

= picture.
R —— Qualitative and quantitative research have
e complementary purposes, strengths, and
”””””””” e limitations in building and evaluating theories.

Theory Building in Software Engineering

»Science and Theories in a Nutshell
... where we will briefly talk about the general notion of theories

~State of Evidence in Software Engineering
... where we will see why theory building is so important to our field

> Research Methods in Software Engineering
... where we will put research methods in a larger (philosophical) picture

~Qualitative “vs” quantitative research
... where we will briefly discuss different research approaches

Theory Building in Software Engineering

»Science and Theories in a Nutshell

Let’s start step by step....

What is scientific practice?
-- What do you think? --

“Science” wasn’t built in a day...

Science is understood as the human undertaking for the search of
knowledge (through systematic application of scientific methods)

- Needs to be considered in a historical context
- Increased understanding of scientific practice (and what science eventually is)

384-322 BC 1561-1626 ... 1694-1778 1724-1804 ... 1896-1980 1902-1994
Aristoteles Bacon Voltaire Kant Piaget Popper
« Search for laws and « Progress of « Emancipation from * Era of constructivism
reasoning for phenomena 1, - 10 dge of gods and beliefs . Falsificati.on as
» Understanding the nature .16 (re ality) - System of demarcation
of phenomena - Draw benefits from Epistemology (theory .]C;.ltflofn "
knowledge growth of knowledge) irth of nu

hypothesis testing

Scientific practices and research methods have

changed over time, the role of empiricism* not
384-322 BC Today

Le Petit Prince (1943)

* Gaining knowledge through sensory experiences

Scientific knowledge and practice

Scientific knowledge is the portrait of
our understanding of reality (via scientific theories).

Necessary postulates for scientific practice:

* There are certain rules, principles, and norms for scientific practices
» Rationalism: Reasoning by argument / logical inference / mathematical proof

« Empiricism: Reasoning by sensory experiences (case studies, experiments,...)

e There is nothing absolute about truth
* There is a scientific community to judge about the quality of empirical studies

« Although empirical observations may be faulty, it is possible (in the long run)
to make reliable observations and to falsify incorrect statements about reality

But what is a Scientific Theory?
-- What do you think? --

Theories (generally speaking)

A theory is a belief that there is a pattern in phenomena.

Examples (following this general notion of theory):
* “Vaccinations lead to autism”

* “Global warming is a hoax by ecologists to harm the industry”
« “Earth is flat”

Are these theories scientific?

Scientific Theories

A scientific theory is a belief that there is a pattern in phenomena while
having survived Note: Addresses so-called

1. tests against sensory experiences Demarcation Problem to
. 5 y €Xp distinguish science from non-

2. criticism by critical peers science (as per introduction by K.
Popper)

1. Tests

« Experiments, simulations, ...

* Replications ..
P In scope of empirical research methods

2. Criticism
* Peer reviews / acceptance in the community

e Corroborations / extensions with further theories

Chapter 12
Building Theories in Software Engineering

Dag LK. Sjeberg, Tore Dyba, Bente C.D. Anda, and Jo E. Hannay

Abstract In mature sciences, building theories is the principal method of acquir-
ing and accumulating knowledge that may be used in a wide range of settings. In
software engineering, there is relatively little focus on theories. In particular, there is
little use and development of empirically-based theories. We propose, and illustrate
with examples, an initial framework for describing software engineering theories,
and give advice on how to start proposing, testing, modifying and using theories to
support both research and practise in software engineering.

1. Introduction

When should theorizing begin? “Theorizing should begin as soon as possible™ What is the
bulk of data necessary to begin theorizing? When is it neither too early nor too late to
begin? Nobody can tell. It all depends on the novelty of the field and on the existence of
theoretically-bent scientists prepared to take the risk of advancing theories that may not
account for the data or that may succumb at the first onslaught from fresh information
gathered in order to test the theories: this takes moral co particularly in an era
dominated by the criterion of success, which is best secured by not attacking big problems.
Two things, though, seem certain: namely. that premature theorizing is likely to be wrong

but not sterile — and that a long deferred beginning of theorizing is worse than any
number of failures, because (1) it encourages the blind accumulation of information that
may tumn out to be mostly useless, and (2) a large bulk of information may render the begin
ning of theorizing next to impossible. (Bunge, 1967, p. 384).

In mature sciences, building theories is the way to gain and cumulate general
knowledge. Some effort has been made to propose and test theories based on
empirical evidence in software engineering (SE) (Hannay et al., 2007), but the use
and building of empirically-based theories' in SE is still in its infancy.

In this chapter, we focus on empirically-based theories: that is, theories that are built or modified
on the basis of empirical research. Hence, in the reminder of this chapter. we use “theory™ as short
for “empirically-based theory™ unless otherwise explicitly stated.

312

hull etal. (eds.). Guide to Advanced Empirical Software Engineering.

“There is no universally
agreed upon definition of the
concept of an empirically-
based theory [in Software
ngineering]|, nor is there any
unitorm terminology for

describing theories.

Approach by characteristics

Source: Sjgberg, D., Dyb4, T., Anda, B., Hannay, J. Building Theories in Software Engineering, 2010.

: . ance Theories
Note: Desigh S n a context

SCientif iC TheOI' ieS haVe ‘ A theory about artefacts 1 '3 mption] > [Effect]

[Artefact speciﬁcation] X [Contex

. Analytical Explanatory Predictive Explanatory &
... 4 purpose: Predictive
Scope Descriptions and Identification of Prediction of what Prediction of what

conceptualisation, phenomena by will happen inthe will happen in the
including identifying causes, future future and
taxonomies, mechanisms or - What will happen? explanation
classifications, and reasons - What will happen
ontologies - Why is? and why?
- What is?

... quality criteria:
» Testability

« Empirical support / (high) level of confidence without explanations (i.e. an
analytical theory)

Note: “Law” versus “Theory”
Alaw is a descriptive theory

 Explanatory power
« Usefulness to researchers and / or practitioners

Adapted from: Sjeberg, D., Dyb4, T., Anda, B., Hannay, J. Building Theories in Software Engineering, 2010.

Exemplary framework for describing theories
in Software Engineering

* Constructs: What are the basic elements?
(Actors, technologies, activities, system entities, context factors)

* Propositions: How do the constructs interact?
 Explanations: Why are the propositions as specified?

* Scope: What is the universe of discourse in which the theory is
applicable?

Source (framework): Sjoberg, D., Dyb4, T., Anda, B., Hannay, J. Building Theories in Software Engineering, 2010.
Source (example): Wagner, Mendez et al. Status Quo in Requirements Engineering: A Theory and a Global Family of Surveys, TOSEM 2018.

Exemplary framework for describing theories

rechcl — Example
[-]

Req Elicitation Technique

Interview

Scenario [P15 | Req Elicitation j:/
Prototyping L

Facilitated Meetings

Observation

Req Documentation Technique
Structured req list
Domain/business process model

Use case model]
Goal model Pe13 Req Documentation }— X a (O r S

Data model -

Non-functional req

Textual Req Engineer —
Semi-formal

Formal

Req Change Approach

Product backlog update 1420 L]
Change requests E— Req Change Management

Trace management

Impact analysis

Req Test Ali Approach
gzeer;::t;) Ze'(;:ter —b2r2e | Req Test Alignment — °
A tan: riteri.
pucepnce s e the()ry 1S
ndard licati * ege
b oo ot — | Proposition:
Control . .
Taioring “Structured requirements lists are documented

textually in free form or textually with constraints.”

‘—‘ Req Eng Process Standard ~ ————— Req Standard Definti
Compliance

Development

Tool support Explanation and Scope:

Quality assurance

Fasas | Project — “Free-form and constraint textual requirements are

Knowledge transfer

Process complexity sufficient for many contexts such as in agile projects

Communication demand

o e dsation where they only act as reminders for further
conversations.”

Req Improvement Means
Continuous improvement P 45-49

Req Eng Improvement ’—
Strengths/weaknesses L 9 =ng fmp
Own business unit/role

Source (framework): Sjeberg, D., Dyba, T., Anda, B., Hannay, J. Building Theories in Sottware Engineering, 2010.
Source (example): Wagner, Mendez et al. Status Quo in Requirements Engineering: A Theory and a Global Family of Surveys, TOSEM 2018.

Note: We don’t “test theories”, but

The Orie S and hyp O the Ses their consequences via hypotheses

Theory / Theories

Theory (Pattern) Hypothesis
Building

Building

(Tentative) Hypothesis

1

Falsification /
Corroborati

Empirical Approaches

(i.e. testable propositions)

Scientific theory

« “[...] based on hypotheses tested and verified
multiple times by detached researchers” (J. Bortz
and N. Doring, 2003)

Hypothesis

e “[...] a statement that Eroposes a possible

explanation to some phenomenon or event” (L.
Given, 2008)

 Grounded in theory, testable and falsifiable

+ Often quantified and written as a conditional
statement

If cause/assumption (independent variables)
then (=>) consequence (dependent variables)

From real world phenomena to theories and back:
The empirical life cycle

Theory / Theories

(Creative) Synthesis of an

: Abductyon explanatory case from a general rule
and a particular result (observation)

Theory (Pattern) Hypothesis
Bulldmg Building

I

Deduction

Application of a general rule
to a particular case,
inferring a specific result

Induction

Inference of a
general rule
from a particular
case/result
(observation)

(Tentative) Hypothesis

Falsification /
Corroborati

Empirical Approaches

T l Empirical Inquiries
o @ . .
Units of Analysis
II. Ill Sampling Frame

TSampling

4\
ln.‘

Source: Mendez and Passoth. Empirical Software
Engineering: from Discipline to Interdiscipline, 2018.

From real world phenomena
The empirical life cycle

Further reading and outlook

to theories and back:

The Journal of Systems and Software 148 (2019) 170-179

Contents lists available at ScienceDirect

SOFTWARE

The Journal of Systems and Software .

journal homepage: www.elsevier.com/locate/jss

Controversy Corner

Empirical software engineering: From discipline to interdiscipline ()

Ghook for
e

Daniel Méndez Ferndndez**, Jan-Hendrik Passoth"

*Software and Systems Engineering, Technical University of Munich, Germany
®Munich Center for Technology in Society, Technical University of Munich, Germany

ARTICLE INFO ABSTRACT

Article history:

Received 21 May 2018

Revised 9 November 2018
Accepted 15 November 2018
Available online 16 November 2018

Empirical software engineering has received much attention in recent years and coined the shift from
a more design-science-driven engineering discipline to an insight-oriented, and theory-centric one. Yet,
we still face many challenges, among which some increase the need for interdisciplinary research. This is
especially true for the investigation of social, cultural and human-centric aspects of software engineering.
Although we can already observe an increased recognition of the need for more interdisciplinary research
Keywords in (empirical) software such research come with challenges barely discussed
Empirical software engineering from a scientific point of view. In this position paper, we critically reflect upon the epistemological setting
Interdisciplinary research of empirical software engineering and elaborate its configuration as an Interdiscipline. In particular, we (1)
Symmetrical collaboration elaborate a pragmatic view on empirical research for software engineering reflecting a cyclic process for
Science & technology studies knowledge creation, (2) motivate a path towards symmetrical interdisciplinary research, and (3) adopt
five rules of thumb from other interdisciplinary collaborations in our field before concluding with new
emerging challenges. This supports to elevate empirical software engineering from a developing discipline
moving towards a paradigmatic stage of normal science to one that configures interdisciplinary teams and
research methods symmetrically.

© 2018 Elsevier Inc. All rights reserved.

yduc

Theory / Theories

¥
)

Theory (Pattern) [Hypothesis
Building Building

Abduci

Induction

(Tentative) Hypothesis L_U Deducdon

Falsification
Corroboratiop

Empirical Approaches

I l Empirical Inquiries

‘ ii Units of Analysis

Sampling Frame

I Sampling
ﬂ;\‘

(Creative) Synthesis of an
n explanatory case from a general rule
and a particular result (observation)

Deduction

Application of a general rule
to a particular case,
inferring a specific result

Preprint: https:/ /arxiv.org/abs/1805.08302

+ Epistemological setting of Empirical Software Engineering
* Theory building and evaluation
 Challenges in Empirical Software Engineering

"\ 1/

Engineering: from Discipline to Interdiscipline, 2018.

ipling Frame

Theory Building in Software Engineering

- State of Evidence in Software Engineering

What are exemplary scientific
Software Engineering Theories?

-- Which ones do you know? --

Scientific Theories in Software Engineering

Current state of evidence in Software Engineering

“[...] judging a theory by assessing the number,
faith, and vocal energy of its supporters [...] basic
political credo of contemporary religious maniacs”

— Imre Lakatos, 1970

* Addressing the situation in the quantum mechanics research community, an analogy

Example: Goal-oriented RE

Papers published [1]: 966

Papers including a case study [1]: 131 . -

Studies involving practitioners [2]: 20

Practitioners actually using GORE [3]: ~ 5%

[1] Horkoff et al. Goal-Oriented Requirements Engineering: A Systematic Literature Map, 2016

1
[2] Mavin, et al. Does Goal-Oriented Requirements Engineering Achieve its Goal?, 2017
[3] Mendez et al. Naming the Pain in Requirements Engineering Initiative — www.napire.org

Example: Goal-oriented RE

For comparison:

Icelanders believing in elves [4]: 54%

[4] https:/ /www.nationalgeographic.com/travel / destinations / europe /iceland / believes-elves-exist-mythology /

Practitioners actually using GORE [3]: ~ 5%

[1] Horkoff et al. Goal-Oriented Requirements Engineering: A Systematic Literature Map, 2016

[2] Mavin, et al. Does Goal-Oriented Requirements Engineering Achieve its Goal?, 2017
[3] Mendez et al. Naming the Pain in Requirements Engineering Initiative — www.napire.org

Current state of evidence in SE

Available studies often...

®

In favour /
corroboration

e ... remain isolated

... discuss little (to no) relation
to existing evidence

Third-party claim
* ... strengthen confidence on own hopes g or second party claim
(and don’t report anything around) In most cases, we
* ... don’t report negative results are here

First or second party claim

Third-party claim

Against /
refutation NEEEN

O

Source (levels of evidence): Wohlin. An Evidence Profile for Software Engineering Research and Practice, 2013.

Conventional Wisdom in SE

“Leprechauns”: Folklore turned into facts

« Emerge from times where claims by R

authorities were treated as “facts” 1
[‘ ‘ LEPRECHAUNS

* Neglecting particularities R

of practical contexts l\® — gﬁgf géElNG ‘/'

 Reasons manifold:

 Lack of empirical awareness

* Neglecting relation to existing evidence

* No proper citations |
(one side of the medal, over-conclusions, etc.) HOW FOLKLORE TURNS INTO FACT AND WHAT T0 DO ABOUT IT

e Lack of data
. LAURENT BossauT

L — —

Exemplary “leprechaun”:
Go To statements considered harmful

1968

Edgar Dijkstra: Go To Statement Considered Harmful

Go To Statement Considered Harmful

Key Words and Phrases: go to statement, jump instruction,
branch instruction, conditional clause, alternative clause, repet-
itive clause, program intelligibility, program sequencing

i CR Categories: 4.22, 5.23, 5.24

EpITOR:

For a number of years I have been familiar with the observation
that the quality of programmers is a decreasing function of the
density of go to statements in the programs they produce. More
recently I discovered why the use of the go to statement has such
disastrous effects, and I became convinced that the go to state-
ment should be abolished from all “higher level” programming
languages (i.e. everything except, perhaps, plain machine code).
At’that time I did not attach too much importance to this dis-
covery; I now submit my considerations for publication because
in very recent discussions in which the subject turned up, I have
been urged to do so.

My first remark is that, although the programmer’s activity
ends when he has constructed a correct program, the process
taking place under control of his program is the true subject
matter of his uctivity, for it is this process that has to accomplish
the desired effect; it is this process that in its dynamic behavior
has to satisfy the desired speci ions. Yet, once the program has
been made, the “‘making” of the corresponding process is dele-

gated to the machine.
Ax

dynamic progress is only characterized when we also give to which
call of the procedure we refer. With the inclusion of procedures
we can characterize the progress of the process via a sequence of
textual indices, the length of this sequence being equal to the
dynamic depth of procedure calling.

Let us now consider repetition clauses (like, while B repeat A
or repeat A until B). Logically speaking, such clauses are now
superfluous, because we can express repetition with the aid of
recursive procedures. For reasons of realism I don’t wish to ex-
clude them: on the one hand, repetition clauses can be imple-
mented quite comfortably with present day finite equipment; on
the other hand, the reasoning pattern known as “induction’
makes us well equipped to retain our intellectual grasp on the
processes generated by repetition clauses. With the inclusion of
the repetition clauses textual indices are no longer sufficient to
describe the dynamic progress of the process. With each entry into
a repetition clause, however, we can associate a so-called ‘“dy-
namic index,” inexorably counting the ordinal number of the
corresponding current repetition. As repetition clauses (just as
procedure calls) may be applied nestedly, we find that now the
progress of the process can always be uniquely characterized by a
(mixed) sequence of textual and/or dynamic indices.

The main point is that the values of these indices are outside
programmer’s control; they are generated (either by the write-up
of his program or by the dynamic evolution of the process) whether
he wishes or not. They provide independent coordinates in which

 Public exchange based on reasoning by argument (rationalist arguments)...
« ... finally challenged by one single empirical study.

] Edsger Dijkstra . Go To Statement Considered Harmful. Communications of the ACM, 1968.

] Frank Rubin. ”GOTO Considered Harmful" Considered Harmful. Communications of the ACM, 1969.

] Donald Moore et al. " 'GOTO Considered Harmful' Considered Harmful" Considered Harmful?" Communications of the ACM, 1987.
]

[
[
[3
[4] Nagappan et al. An empirical study of goto in C code from GitHub repositories, 2015.

Exemplary “leprechaun”:
Go To statements considered harmful

1968

Edgar Dijkstra: Go To Statement Considered Harmful

Go To Statement Considered Harmful

Key Words and Phrases: go to statement, jump instruction,
branch instruction, conditional clause, alternative clause, repet-
itive clause, program intelligibility, program sequencing

i CR Categories: 4.22, 5.23, 5.24

EpITOR:

For a number of years I have been familiar with the observation
that the quality of programmers is a decreasing function of the
density of go to statements in the programs they produce. More
recently I discovered why the use of the go to statement has such
disastrous effects, and I became convinced that the go to state-
ment should be abolished from all “higher level” programming
languages (i.e. everything except, perhaps, plain machine code).
At’that time I did not attach too much importance to this dis-
covery; I now submit my considerations for publication because
in very recent discussions in which the subject turned up, I have
been urged to do so.

My first remark is that, although the programmer’s activity
ends when he has constructed a correct program, the process
taking place under control of his program is the true subject
matter of his uctivity, for it is this process that has to accomplish
the desired effect; it is this process that in its dynamic behavior
has to satisfy the desired speci ions. Yet, once the program has
been made, the “‘making” of the corresponding process is dele-
gated to the machine.

Ax)

dynamic progress is only characterized when we also give to which
call of the procedure we refer. With the inclusion of procedures
we can characterize the progress of the process via a sequence of
textual indices, the length of this sequence being equal to the
dynamic depth of procedure calling.

Let us now consider repetition clauses (like, while B repeat A
or repeat A until B). Logically speaking, such clauses are now
superfluous, because we can express repetition with the aid of
recursive procedures. For reasons of realism I don’t wish to ex-
clude them: on the one hand, repetition clauses can be imple-
mented quite comfortably with present day finite equipment; on
the other hand, the reasoning pattern known as “induction’
makes us well equipped to retain our intellectual grasp on the
processes generated by repetition clauses. With the inclusion of
the repetition clauses textual indices are no longer sufficient to
describe the dynamic progress of the process. With each entry into
a repetition clause, however, we can associate a so-called ‘“dy-
namic index,” inexorably counting the ordinal number of the
corresponding current repetition. As repetition clauses (just as
procedure calls) may be applied nestedly, we find that now the
progress of the process can always be uniquely characterized by a
(mixed) sequence of textual and/or dynamic indices.

The main point is that the values of these indices are outside
programmer’s control; they are generated (either by the write-up
of his program or by the dynamic evolution of the process) whether
he wishes or not. They provide independent coordinates in which

1969

“GOTO Considered Harmful”
Considered Harmful

The most-noted item ever pub-
lished in Communications was a
letter from Edsger W. Dijkstra
entitled “Go To Statement Con-
sidered Harmful” [1] which at-
tempted to give a reason why the
GOTO statement might be harm-
ful. Although the argument was
academic and unconvincing, its
title seems to have become fixed
in the mind of every programming
manager and methodologist. Con-
sequently, the notion that the
GOTO is harmful is accepted al-
most universally, without question
or doubt. To many people, “struc-
tured programming” and “GOTO-
less programming” have become
synonymous.

 Public exchange based on reasoning by argument (rationalist arguments)...
« ... finally challenged by one single empirical study.

1] Edsger Dijkstra . Go To Statement Considered Harmful. Communications of the ACM, 1968.

3

Donald Moore et al. " 'GOTO Considered Harmful' Considered Harmful" Considered Harmful?" Communications of the ACM, 1987.

[1]
[2] Frank Rubin. ”GOTO Considered Harmful" Considered Harmful. Communications of the ACM, 1969.
[3]
[4] Nagappan et al. An empirical study of goto in C code from GitHub repositories, 2015.

Exemplary “leprechaun”:
Go To statements considered harmful

1968

Edgar Dijkstra: Go To Statement Considered Harmful

Go To Statement Considered Harmful

Key Words and Phrases: go to statement, jump instruction,
branch instruction, conditional clause, alternative clause, repet-
itive clause, program intelligibility, program sequencing

i CR Categories: 4.22, 5.23, 5.24

EpITOR:

For a number of years I have been familiar with the observation
that the quality of programmers is a decreasing function of the
density of go to statements in the programs they produce. More
recently I discovered why the use of the go to statement has such
disastrous effects, and I became convinced that the go to state-
ment should be abolished from all “higher level” programming
languages (i.e. everything except, perhaps, plain machine code).
At’that time I did not attach too much importance to this dis-
covery; I now submit my considerations for publication because
in very recent discussions in which the subject turned up, I have
been urged to do so.

My first remark is that, although the programmer’s activity
ends when he has constructed a correct program, the process
taking place under control of his program is the true subject
matter of his uctivity, for it is this process that has to accomplish
the desired effect; it is this process that in its dynamic behavior
has to satisfy the desired specifications. Yet, once the program has
been made, the “‘making” of the corresponding process is dele-
gated to the machine.

Ax 2)

dynamic progress is only characterized when we also give to which
call of the procedure we refer. With the inclusion of procedures
we can characterize the progress of the process via a sequence of
textual indices, the length of this sequence being equal to the
dynamic depth of procedure calling.

Let us now consider repetition clauses (like, while B repeat A
or repeat A until B). Logically speaking, such clauses are now
superfluous, because we can express repetition with the aid of
recursive procedures. For reasons of realism I don’t wish to ex-
clude them: on the one hand, repetition clauses can be imple-
mented quite comfortably with present day finite equipment; on
the other hand, the reasoning pattern known as “induction’
makes us well equipped to retain our intellectual grasp on the
processes generated by repetition clauses. With the inclusion of
the repetition clauses textual indices are no longer sufficient to
describe the dynamic progress of the process. With each entry into
a repetition clause, however, we can associate a so-called ‘“dy-
namic index,” inexorably counting the ordinal number of the
corresponding current repetition. As repetition clauses (just as
procedure calls) may be applied nestedly, we find that now the
progress of the process can always be uniquely characterized by a
(mixed) sequence of textual and/or dynamic indices.

The main point is that the values of these indices are outside
programmer’s control; they are generated (either by the write-up
of his program or by the dynamic evolution of the process) whether
he wishes or not. They provide independent coordinates in which

1969

“GOTO Considered Harmful”
Considered Harmful

The most-noted item ever pub-
lished in Communications was a
letter from Edsger W. Dijkstra
entitled “Go To Statement Con-
sidered Harmful” [1] which at-
tempted to give a reason why the
GOTO statement might be harm-
ful. Although the argument was
academic and unconvincing, its
title seems to have become fixed
in the mind of every programming
manager and methodologist. Con-
sequently, the notion that the
GOTO is harmful is accepted al-
most universally, without question
or doubt. To many people, “struc-
tured programming” and “GOTO-
less programming” have become
synonymous.

1987

“‘GOTO Considered Harmful’
Considered Harmful” Considered
Harmful?

I enjoyed Frank Rubin’s letter
(“*GOTO Considered Harmful’
Considered Harmful,” March 1987,
pp. 195-196), and welcome it as an
opportunity to get a discussion
started. As a software engineer, I
have found it interesting over the
last 10 years to write programs
both with and without GOTO
statements at key points. There
are cases where adding a GOTO as
a quick exit from a deeply nested
structure is convenient, and there
are cases where revising to elimi-
nate the GOTO actually simplifies
the program.

 Public exchange based on reasoning by argument (rationalist arguments)...
« ... finally challenged by one single empirical study.

1] Edsger Dijkstra . Go To Statement Considered Harmful. Communications of the ACM, 1968.

Frank Rubin. ”GOTO Considered Harmful" Considered Harmful. Communications of the ACM, 1969.
Donald Moore et al. " 'GOTO Considered Harmful' Considered Harmful" Considered Harmful?" Communications of the ACM, 1987.
4] Nagappan et al. An empirical study of goto in C code from GitHub repositories, 2015.

[
[
[
[

1

]
]
]
]

Exemplary “leprechaun”:
Go To statements considered harmful

Edgar Dijkstra: Go T/

Go To Statement Consider

Key Words and Phrases: go to
branch instruction, conditional ¢
itive clause, program intelligibil

i CR Categories: 4.22, 5.23, 5.24

EpITOR:

For a number of years I have be¢
that the quality of programmers
density of go to statements in the
recently I discovered why the use
disastrous effects, and I became ¢
ment should be abolished from al
languages (i.e. everything except,
At’that time I did not attach toc
covery; I now submit my conside
in very recent discussions in whicl
been urged to do so.

My first remark is that, althot
ends when he has constructed a
taking place under control of hi:
matter of his activity, for it is this
the desired effect; it is this process
has to satisfy the desired specificat
been made, the “making” of the

gated to the machine.
Ax

TOAR

2015

An Empirical Study of Goto in C Code from GitHub
Repositories

Meiyappan Nagappan', Romain Robbes?, Yasutaka Kamei®, Eric Tanter?,
Shane Mclntosh*, Audris Mockus®, Ahmed E. Hassan¢
'Rochester Institute of Technology, Rochester, NY, USA; ?Computer Science Department (DCC),
University of Chile, Santiago, Chile; *Kyushu University, Nishi-ku, Japan; *McGill University, Montreal,
Canada; °University of Tennessee-Knoxville, Knoxville, Tennessee, USA; ®*Queen’s University,
Kingston, Ontario, Canada
'mei@se.rit.edu, *{rrobbes, etanter}@dcc.uchile.cl, *kamei@ait.kyushu-u.ac.jp,
‘shanemcintosh@acm.org, *audris@utk.edu, ‘ahmed@cs.queensu.ca

ABSTRACT

It is nearly 50 years since Dijkstra argued that goto ob-
scures the flow of control in program execution and urged
programmers to abandon the goto statement. While past
research has shown that goto is still in use, little is known
about whether goto is used in the unrestricted manner that
Dijkstra feared, and if it is ‘harmful’ enough to be a part of
a post-release bug. We, therefore, conduct a two part em-
pirical study - (1) qualitatively analyze a statistically rep-
resentative sample of 384 files from a population of almost
250K C programming language files collected from over 11K
GitHub repositories and find that developers use goto in C
files for error handling (80.21+5%) and cleaning up resources
at the end of a procedure (40.36 & 5%); and (2) quantita-
tively analyze the commit history from the release branches
of six OSS projects and find that no goto statement was re-
moved/modified in the post-release phase of four of the six
projects. We conclude that developers limit themselves to
using goto appropriately in most cases, and not in an un-
restricted manner like Dijkstra feared, thus suggesting that
goto does not appear to be harmful in practice.

Harmful [11]. This is one of the many works of Dijkstra
that is frequently discussed by software practitioners [25]
and researchers alike (more than 1,300 citations according
to Google Scholar and almost 4000 citations according to
ACM Digital Library as of Aug 15, 2014). This article has
also resulted in a slew of other articles of the type global
variables considered harmful [32], polymorphism considered
harmful (24], fragmentation considered harmful [16], among
many others. In fact, Meyer claims that as of 2002, there
are thousands of such articles, though most are not peer-
reviewed [15].

Indeed, Dijkstra’s article [11] has had a tremendous im-
pact. Anecdotally, several introductory programming courses
instruct students to avoid goto statements solely based on
Dijkstra’s advice. Marshall and Webber [19] warn that when
programming constructs like goto are forbidden for long
enough, they become difficult to recall when required.

Dijkstra’s article on the use of goto is based on his de-
sire to make programs verifiable. The article is not just an
opinion piece; as Koenig points out (7], Dijkstra provides
strong logical evidence for why goto statements can intro-
duce problems in software.

“We conclude that developers
limit themselves to using goto
appropriately, [not] like Dijkstra
feared, [thus] goto does not
appear to be harmful in practice.’

 Public exchange based on reasoning by argument (rationalist arguments)...
« ... finally challenged by one single empirical study.

Edsger Dijkstra . Go To Statement Considered Harmful. Communications of the ACM, 1968.
Frank Rubin. ”GOTO Considered Harmful" Considered Harmful. Communications of the ACM, 1969.
Donald Moore et al. " 'GOTO Considered Harmful' Considered Harmful" Considered Harmful?" Communications of the ACM, 1987.

Nagappan et al. An empirical study of goto in C code from GitHub repositories, 2015.

4

Takeaway

 The current state of evidence in
Software Engineering is still weak
* Practical relevance and impact?

* Potential for transfer into practice and
adoption?

“Close enough. Let’s go.”

* Theory building and evaluation (i.e. empirical SE) are crucial
» Reason about the discipline and social phenomena involved

» Recognise and understand limits and effects of artefacts (technologies,
techniques, processes, models, etc.) in their contexts

Theory Building in Software Engineering

> Research Methods in Software Engineering

Recap: The empirical Lifecycle

Theory / Theories

Theory (Pattern) Hypothesis
Buzldmg Building

1

Induction

(Tentative) Hypothesis Deduction

Falsification
Corr obomtto

Empirical Approaches

~

es

T l Empirical Inquiri

|.m|i Units of Analysis

Sampling Frame

T Sampling

IV
Anah

Source: Mendez and Passoth. Empirical Software ‘ '
Engineering: from Discipline to Interdiscipline, 2018. \‘ [4

(Empirical) methods

* Each method...

« ...has a specific purpose
» ...relies on a specific data type

* Purposes
 Exploratory
* Descriptive
* Explanatory
* Improving

* Data Types
e Qualitative
 Quantitative

Example: “Grounded Theory”

Theory / Theorizs

Induction

Deduction

~wwuve) Hypothesis ﬂ

alsification /
Corroboratio,

Empirical Approachac

(Empirical) methods — where do they belong?

Theory / Theories

Theory (Pattern) ypgthgsis
Building Building

' I

Induction |

(Tentative) Hypothesis Deduction

alsification /
Corroboratio

Empirical Approaches

I l Empirical Inquiries

ii Units of Analysis

Sampling Frame

I Sampling

42>
.::‘

Which research method(s) to use
in which situation?

There is no such thing as a universal
way of scientific practice

C‘

J
;"J

—

(TRESMR@ H M

Method selection depends on many
non-trivial questions

What is the
Exploratory? Descriptive? Explanatory? Improving?

What is the
Inductive? Deductive?

What is the
Building a new theory? “Testing” existing theory?

What is the
What-questions? Why-questions?

What is the
Controlled environments? Realistic environments?

What is the necessary
Population source?
Units of analysis?

Criteria for
selecting methods

Criteria for
environment selection

(and sampling)

Not trivial, but possible: checklists

Selecting Empirical Methods for Software Engineering
Research

Authors: Steve Easterbrook, Janice Singer, Margaret-Anne Storey, Daniela Damian
Abstract

Selecting a research method for empirical software engineering research is problematic because
the benefits and challenges to using each method are not yet well catalogued. Therefore, this
chapter describes a number of empirical methods available. It examines the goals of each and
analyzes the types of questions each best addresses. Theoretical stances behind the methods,
practical considerations in the application of the methods and data collection are also briefly
reviewed. Taken together, this information provides a suitable basis for both understanding and
selecting from the variety of methods applicable to empirical software engineering.

Roel J. Wieringa

1.0 Introduction

[]
Despite widespread interest in empirical software engi ing, there is little guid: on which
research methods are suitable to which research problems, and how to choose amongst them.
Many researchers select inappropriate methods because they do not understand the goals

underlying a method or pos: little knowledge about alternatives. As a first step in helping
researchers select an appropriate method, this chapter discusses key questions to consider in

[]
selecting a method, from philosophical considerations about the nature of knowledge to practical
considerations in the application of the method. We characterize key empirical methods
applicable to empirical software engineering, and explain the strengths and weaknesses of each.

Software engineering is a multi-disciplinary field, crossing many social and technological
boundaries. To understand how software engineers construct and maintain complex, evolving

software systems, we need to investigate not just the tools and processes they use, but also the

social and cognitive processes surrounding them. This requires the study of human activities. We

need to understand how individual software engineers develop software, as well as how teams

and organizations coordinate their efforts.

Because of the importance of human activities in software development, many of the research

methods that are appropriate to software engineering are drawn from disciplines that study

human behaviour, both at the individual level (e.g. psychology) and at the team and " " :

orga tional levels (e.g. sociology). These methods all have known flaws, and each can only fo [] N fO ma t on Sy Ste ms

provide limited, qualified evidence about the phenomena being studied. However, each method i f 2 - .
and Software Engineering

is flawed differently (McGrath, 1995) and viable research strategies use multiple methods,
chosen in such a way that the weaknesses of each method are addressed by use of
complementary methods (Creswell, 2002).
Describing in detail the wide variety of possible empirical methods and how to apply them is
beyond the scope of the chapter. Instead, we identify and compare five classes of research
method that we believe are most relevant to software engineering:

¢ Controlled Experiments (including Quasi-E

¢ Case Studies (both exploratory and confirmatory);

* Survey Research;

xperiments),

@ Springer

I —— T —— I — —
Good starting point More advanced

e Chapter 16 + Appendix
e http:/ /bit.ly / checklists-design_science

How to achieve scientific progress?

In step-wise iterations, with mult1p1e methods
(aka “ == ramme”

L (Tentative) Hypothesis L_u
\
Falsification /
\ Corroboratiop
= Empirical Approaches
Empirical Inquiries
0

Progress via multi-study approaches

° . Theory / Theories
Problem analysis Q

i
'

e.g. Systematic Mapping Study Theors "’“”””)a Qﬁgpﬂm
Building utlaing
°r Survey Induction = L—u Deduction
‘ (Tentative) Hypothesis
Proposal new / adaptation difcation)
Corroboratio,
existing technology Replication ° = °0°
~—— Empirical Approaches
e.g. RE Improvement T Emprca !
mplrlca nqulne:
ApproaCh ° ‘ ii Units of Analysis Sampling Frame
alidation of new technology [sanpin
. (‘“
in artificial setting g
Replication

e.g. Controlled Experiment

valuation of new technology
in realistic setting

e.g. Case Study

Large-scale evaluation

e.g. Field Study or longitudinal study

Theory Building in Software Engineering

> Qualitative “vs” quantitative research

What is the difference between

qualitative and quantitative research?
-- What do you think? --

Warning: EmSE emerges from natural
science, thus, qualitative methods are often
confronted with prejudice

“] preter working with real data
[not with qualitative data]”

— Anonvmous ISERN member

“In contrast [to previous qualitative studies], this study attempts

to obtain more scientific evidence in the form of objective,
quantitative data.”

— Anonymous ESEM 2018 author

Warning: EmSE emerges from natural
science, thus, qualitative methods are often
confronted with prejudice

“] preter working with real data
[not with qualitative data]”

— Anonvmous ISERN member

“In contrast [to previous qualitative studies], this study attempts
to obtain more scientific evidence in the form of objective,
quantitative data.”

— Anonymous ESEM 2018 author

Postulate I
Every research approach has a specific scope of
validity only

Scope of validity of Study 1

Scope of validity of Study 2

Scope of Interest = Scope of the

N

Scope of validit

Scope of validity of Study 3

urce: Sjoberg, D., Dyb4, T., Anda, B., Hannay, J. Building Theories in Software Engineering, 2010.

Scope of validity = Degree of reality

Realistic environment

. A0
o
ycol)
Re?
Case Study Field St
Research search
> 5
U -
2 ol
4
P
Controlled (lab) Scope of validity”
Experiment
Simulation .
ePIICatI-
Ons,

Artificial environment

* Extremely simplified view to orient discussions

Different research methods complement each
other in scaling up to practice

Focus of
case
studies Similarity to
population units
% Street credibility

Realistic case

Focus of
(lab) experiments

Simple model Lab credibility

» Sample size
Small sample Large sample

Focus of field studies
and replications

Source: Wieringa R. Empirical Research Methods for Technology Validation: Scaling Up to Practice, 2013.

The essence

Quantitative studies focus primarily on the kind of evidence
that will enable you to understand what is going on.

— —

Qualitative studies focus primarily on the kind of evidence
that will enable you to understand the meaning [and purpose,
reasoning, etc] of what is going on.

Qualitative and quantitative methods have complementary
purposes, strengths, and limitations in theory building.

— L ——

Two complementary approaches (+1)

* Quantitative research: and finding causes to predict
similar events in the future — “What?”-questions
* (Typically) focus on what, how much, or how many
* (Typically) in numerical forms
* (Typically) descriptive purpose

* Qualitative research: land purpose, reasoning,
etc.] of a phenomenon for those involved — “So what?”-questions
* (Typically) focus on why /meaning, and how people interpret their experiences
* (Typically) in variety of non-numerical forms, like texts, diagrams, etc.
* (Typically) exploratory or explanatory purpose

e (Mix-method research)

Adopted from: Da Silva. Tutorial given at the Ibero-American Conference on Software Engineering, 2018 (Bogota, Colombia)

Two complementary approaches

“What?”-Questions “So what?”-Questions
Descriptive & predictive purposes Explanatory & exploratory purposes
Quantitative data Qualitative data

Case study research
@
Survey research
@
(Quasi-) Controlled Action
® experiments ® ® research ®
P Ethnographic ®

studies

Qualitative “vs” quantitative research

* For all, you can add a “in tendency”

_ Quantitative research Qualitative research

Goals * Description, control, prediction * Understanding, reasoning,
e Hypothesis testing (typically) explanations, descriptions, meaning
(to subjects), discovery

e Hypothesis generation (typically)

Design characteristics e Predetermined, structured / fixed » Flexible, evolving, emergent
e Deductive, statistical * Inductive, constant comparative

Samples e Large(r), random, representative e Small, non-random (sometimes even
opportunistic), purposeful, theoretical

Data collection e Inanimate instruments (tests, surveys, e Researcher often primary instrument

questionnaires, etc.) e Interviews, observations, document

analysis, ...

Findings e Precise and statistical e Comprehensive, holistic, rich
descriptions

Adopted from: Da Silva. Tutorial given at the Ibero-American Conference on Software Engineering, 2018 (Bogota, Colombia)

Further reading: Selected papers

The ABC of Software Engineering Research

KLAAS-JAN STOL, University College Cork and Lero—the Irish Software Research Centre, Ireland
BRIAN FITZGERALD, University of Limerick and Lero—the Irish Software Research Centre, Ireland

A variety of research methods and techniques are available to SE researchers, and while several overviews
exist, there is consistency neither in the research methods covered nor in the terminology used. Furthermore,
research is sometimes critically reviewed for characteristics inherent to the methods. We adopt a taxonomy
from the social sciences, termed here the ABC framework for SE research, which offers a holistic view of eight
archetypal research strategies. ABC refers to the research goal that strives for generalizability over Actors
(A) and precise measurement of their Behavior (B), in a realistic Context (C). The ABC framework uses two
dimensions widely considered to be key in research design: the level of obtrusiveness of the research and
the generalizability of research findings. We discuss metaphors for each strategy and their inherent limita-
tions and potential strengths. We illustrate these research strategies in two key SE domains, global software

and ineering, and apply the framework on a sample of 75 articles. Finally, we
discuss six ways in which the framework can advance SE research.

CCS Concepts: General and reference — Surveys and overviews; General literature; Empirical studies;
Additional Key Words and Phrases: Research methodology, research strategy

ACM Reference format:
Klaas-Jan Stol and Brian Fitzgerald. 2018. The ABC of Software Engineering Research. ACM Trans. Softw. Eng.
‘Methodol. 27, 3, Article 11 (September 2018), 51 pages.

https://doi.org/10.1145/3241743

1 INTRODUCTION

The proper place to study elephants
is the jungle, not the zoo.!

The proper place to study bacteria
is the laboratory, not the jungle

!Ephraim R. McLean, comment on a paper by Richard van Horn [135).
2Remark by Keng-Leng Siau at a conference.

‘This work was supported, in part, by Science Foundation Ireland grant 15/SIRG/3293 and 13/RC/2094 and cofunded under
the European Regional Development Fund through the Southern & Eastern Regional Operational Programme to Lero—the
Irish Software Research Centre (http://wwwlero.ie).

Authors’ addresses: K.-J. Stol, School of Computer Science and Technol Building, Univer-
sity College Cork, Western Road, Cork, Lero—the Irish Software Research Centre; B. Fitzgerald, Lero—the Irish Software
Research Centre, Tierney Building, Department of Computer Science and Information Systems, University of Limerick,
Limerick.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM

1049-331X/2018/09-ART11 §15.00

https://doi.org/10.1145/3241743

ACM on Software and Vol. 27, No. 3, Article 11. Pub. date: September 2018.

Recommended starting point

Empir Software Eng (2009) 14:131-164
DOI 10.1007/510664-008-9102-8

Guidelines for conducting and reporting case study
research in software engineering

Per Runeson - Martin Host

Published online: 19 December 2008
© The Author(s) 2008. This article is published with open access at Springerlink.com
Editor: Dag Sjoberg

Abstract Case study is a suitable research methodology for software engineering research
since it studies contemporary phenomena in its natural context. However, the understanding
of what constitutes a case study varies, and hence the quality of the resulting studies. This
paper aims at providing an introduction to case study methodology and guidelines for
researchers conducting case studies and readers studying reports of such studies. The
content is based on the authors” own experience from conducting and reading case studies.
The terminology and guidelines are compiled from different methodology handbooks in
other research domains, in particular social science and information syst/ems and adapted to
the needs in software engineering. We present ded for softy
engineering case studies as well as empirically derived and evaluated checklists for
researchers and readers of case study research.

Keywords Case study - Research methodology - Checklists - Guidelines

1 Introduction

The acceptance of empirical studies in software engineering and their contributions to
increasing knowledge is continuously growing. The analytical research paradigm is not
sufficient for investigating complex real life issues, involving humans and their interactions
with technology. However, the overall share of empirical studies is negligibly small in
computer science research; Sjeberg et al. (2005), found 103 experiments in 5,453 articles
Ramesh et al. (2004) and identified less than 2% experiments with human subjects, and
only 0.16% field studies among 628 articles. Further, existing work on empirical research

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.25, NO.4, JULY/AUGUST 1999

Qualitative Methods in Empirical Studies
of Software Engineering
Carolyn B. Seaman, Member, IEEE

Abstract—While empirical studies in software engineering are beginning to gain recognition i the research community, this subarea
is also entering a new level of maturity by beginning to address the human aspects of software development. This added focus has
added a new layer of complexity to an already challenging area of research. Along with new research questions, new research
methods are needed to study nontechnical aspects of software engineering. In many other discipiines, qualitative research methods
have been developed and are commonly used to handle the complexity of issues involving human behavior. This paper presents
several qualitative methods for data collection and analysis and describes them in terms of how they might be incorporated into
empirical studies of software engineering, in particular how they might be combined with quantitative methods. To illutrate this use of

557

qualitative methods, examples from real software engineering studies are used throughout.

Index Terms—Qualitative methods, data collection, data analysis, experimental design, empirical software engineering, participant

observation, interviewing.

+

1 INTRODUCTION
THE study of software engineering has always been
complex and difficult. The complexity arises from
technical issues, from the awkward intersection of machine
and human capabilities, and from the central role of human
behavior in software development. The first two aspects
have provided more than enough complex and interesting
problems to keep empirical software engineering research-
ers engaged up until now. But it is the last factor, human
behavior, that software engineering empiricists are only
recently beginning to address in a serious way.

Empirical studies have been conducted in software
engineering for several decades, but have only relatively
recently achieved significant recognition in the broader
software engineering research community (as evidenced by
this special issue). But this subarea has also reached a
discernibly new level of maturity that is evidenced by the
new types of questions and methods seen in more recent
studies. In particular, software engineering empiricists are
beginning to address the human role in software develop-
ment. One indication of this broadening of focus is the
nature of recent work in traditionally empirical software
engineering research groups. For example, recent studies at
the Software ing Laboratory' have on
human aspects through observation of communication

1. The Software Engineering Laboratory (SEL) is sponsored jointly b
NASA/Goddard Space Flight Center, Compuler Scinces Coeporation and
the Empirical Software Engineering Group at the University of Maryland.
‘The SEL has been conducting various types of empirical studies of diverse
Software engineering issues for more than two decades.

® C.B. Seaman is with the Department of Information Systems, University of
Maryland Baltimore County, Baltimore, MD 21250.
E-mail: cseaman@umbc.edu.
Manuscript received 30 June 1998.
Recommended for acceptance
For information on obtaining reprints u/tns article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 109541

among developers [17] and the elicitation of the processes
used to build systems based on COTS? components [15].
Part of the reason for this new interest among research-
ers actually comes from practitioners, many of whom have
seen the advances gained by adapting research results in
technical areas. But many in the industry recognize that
software development also presents a number of unique
management and organizational issues, or “people pro-
blems,” that need to be addressed and solved in order for
the field to progress. Calls to take “people problems”
seriously were first made decades ago [4], [6], and continue
to appear regularly in the literature [1], [5], [13]. Finally,
they are starting to be heeded by researchers who are

starting to study issues and the i
between the technical and nontechnical in software en-
gineering.

Qualitative data are data represented as words and
pictures, not numbers [8]. Qualitative research methods
were designed, mostly by educational researchers and other
social scientists [19], to study the complexities of human
behavior (e.g,
It could be argued that human behavior is one of the few
phenomena that is complex enough to require qualitative
methods to study it. Anything else can be adequately
described and explained through statistics and other
quantitative methods. In software engineering, the blend
of technical and human behavioral aspects lends itself to
combining qualitative and quantitative methods, in order to
take advantage of the strengths of both.

The focus of this paper is on showing how qualitative
methods can be adapted and incorporated into the designs
of empirical studies in software engineering. The principal
advantage of using qualitative methods is that they force
the researcher to delve into the complexity of the problem
rather than abstract it away. Thus, the results are richer and

2. Commercial-Off-The-Shelf.

Further reading on terminological demarcation and
key characteristics of methods

Theory Building in Software Engineering

Key Takeaways

Let’s use the breakout sessions to jointly discuss
research strategies, methods, and their (case-based)
application in detail.

[am organising a summer school on human factors in
software engineering (hfse.school).
Interested? Approach me!

