Empirical Software Engineering

Daniel Méndez

il Blekinge Institute of Technology, Sweden
i fortiss GmbH, Germany
& www.mendezfe.org

¥ mendezfe

Ground rules

(1) Whenever you have questions / remarks,
please don’t ask Google | but

share them with the whole group.

(2) As we have to use zoom,

please feel free to interrupt me any time as I
might not see you raising your hand.

What could be wrong with such a study?

H_0: There is no difference.

20 people without a driving licence participate.
They are taught to drive in a lecture of 2 hours.

Results: The BMW is significantly better than the Audi (p<0.01)

Adopted from: Dag LK. Sjeberg, Keynote at the International Conference on Product-Focused SW Process Improvement 2016, Trondheim, Norway.
Image sources: Manufacturer websites

Goal of the lecture
What is this little thing called “Empirical Software Engineering”?

What we will discuss Focus:

What & Why
e In a nutshell: p

» Broader perspective on Software Engineering (SE) as a scientific discipline

* A few principles, concepts, and terms in Empirical SE

« Why we need empiricism in Software Engineering research

« What the perspectives are for the research community and for you

¥

Basis for...

e Course on research methods

 Master Thesis projects

e The time afterwards

Outline

« What is Empirical Software Engineering?
« Why do we need Empirical Software Engineering?

« What are the perspectives in Empirical Software Engineering?

Outline

« Why do we need Empirical Software Engineering?

« What are the perspectives in Empirical Software Engineering?

Let’s start step by step....

What is science?
-- What do you think? --

“Science” wasn’t built in a day...

Science is understood as the human undertaking for the search of
knowledge (through systematic application of scientific methods)

- Needs to be considered in a historical context
- Increased understanding of scientific practice (and what science eventually is)

384-322 BC 1561-1626 ... 1694-1778 1724-1804 ... 1896-1980 1902-1994
Aristoteles Bacon Voltaire Kant Piaget Popper
« Search for laws and « Progress of « Emancipation from * Era of constructivism
reasoning for phenomena 1, - 10 dge of gods and beliefs . Falsificati.on as
» Understanding the nature .16 (re ality) - System of demarcation
of phenomena - Draw benefits from Epistemology (theory .]C;.ltflofn "
knowledge growth of knowledge) irth of nu

hypothesis testing

Scientific practices and research methods have

changed over time, the role of empiricism* not
384-322 BC Today

Le Petit Prince (1943)

* Gaining knowledge through sensory experiences

Scientific knowledge and practice

Scientific knowledge is the portrait of
our understanding of reality (via scientific theories).

Necessary postulates for scientific practice (selected):

* There are certain rules, principles, and norms for scientific practices
« Rationalism: Reasoning by argument / logical inference / mathematical proof
« Empiricism: Reasoning by sensory experiences (case studies, experiments,...)

* There is nothing absolute about truth

* There is a scientific community to judge about the quality of empirical
studies

What is Software Engineering research?
[s it scientific?
-- What do you think? --

Ditterent purposes in science

» Gaining and validating new « Applying scientific methods to
insights practical ends
* Often theoretical character * Often practical (& pragmatic)

* Typically addressed by natural character

and social sciences * Typically addressed by
engineering disciplines

In software engineering research, we
* apply scientific methods to practical ends (treating design science problems)
e treat insight-oriented questions, thus, we are an insight-oriented science, too

Ditterent purposes in science

Basic Science

* Graph theory
(Konigsberg Bridge problem)

o
vaxjo

o o
Randers Haimstad Kalmar
Holstebro o
o :_
elsingborg S—

H
DENMARK

Esblerg Copenhag}

Odense

= grlenshurg
@ QGdﬂn
Kiel
cl.l'ihlck
Bremerhaven_ Hamburg
i @ 3 | seerecin
R J Bydgoszcz
alianbarst. e Linsbrg § : ovis
- o £ i
DS . APAN
-5 @ 13hrs 26 min Berliny
Sihabrack o aJ © T T e]
g '65 "' - 9y Potsdam Q’
raunschweig
Gl NG :) POL
Miinster Bielefeld Cotibus | %
= SHamm L
e Kassel R T
Leipzig Qosritz ~Wroclaw
e - Erfurt 7 &
© oSiesen o cera
o 'S <y . Opole
s GERMANY o o b 2
A Hlausn” 4L Katowice,
eutal G e B
rankfurtam Main” gy © L W
Wl zBuse) Pilsen ¥4
g 1" CZECHIA ostrave
® 1 i
5 Mannheim [S L
‘2 Karlsruhe h \ ® 7 b
g Heilbronn o Y & o 1
7 " Regensburg Ay SO &
7 ® aten P RN)
) sgare gpandsnut)
A AlgabireR lunich (XJ Vienna protisavs
o 0 9 ®)
‘eiburg im Y% R r
: e 3 o
Breleoful AR Salzbura s AlIQTDIA ol S0u8r. H

Applied Science

{ 9:411

Tap

Start on Riata
G-> Vista Cir

ﬁ Turn left

10:03 22 16.0

arrival min - mi

Share ETA

<
Fundamental / basic research

Image Sources: Wikipedia (1), Apple (r)

Applied research

What is Software Engineering research?
[s it scientific?

-- Yes, Software Engineering research is scientific! --

Empirical Software Engineering

The ultimate goal of Empirical Software Engineering is to advance
our body of knowledge by building and evaluating theories.

Relevance from a theoretical and practical perspective: by
D VGn Y

¢ "@“ %\
NG
\\. >

about the discipline and (e.g. social) phenomena
involved

and limitations and effects of
artefacts (e.g. by evaluating technologies, techniques, |
processes, models, etc.) in their practical contexts &
PRACTICE

‘.

By
TES
;,\

But what is a Scientific Theory?
-- What do you think? --

Theories (generally speaking)

A theory is a belief that there is a pattern in phenomena.

Examples (following this general notion of theory):
 “Earth is flat”

e “Vaccinations lead to autism”
 “Wearing face masks does more harm than the effects of COVID-19”

Are these theories scientific?

Scientific Theories

A scientific theory is a belief that there is a pattern in phenomena while
having survived Note: Addresses so-called

1. tests against sensory experiences Demarcation Problem to
. 5 y €Xp distinguish science from non-

2. criticism by critical peers science (as per introduction by K.
Popper)

1. Tests
« Experiments, simulations, ...

* Replications

In scope of empirical research methods
2. Criticism (but out of scope for today)

* Peer reviews / acceptance in the community

e Corroborations / extensions with further theories

Scientific Theories have...

. Analytical Explanatory Predictive Explanatory &
Scope Descriptions and Identification of Prediction of what Prediction of what
conceptualisation, phenomena by will happen inthe will happen in the
including identifying causes, future future and
taxonomies, mechanisms or - What will happen? explanation
classifications, and reasons - What will happen
ontologies - Why is? and why?
- What is?
. . . Note: Law “versus” Theory
cos quallty criteria: Alaw is a descriptive theory
e Testabili ty without explanations (i.e. an

analytical theory)

» Level of confidence (,,relation to existing evidence”
» Usefulness to researchers and practitioners (,,impact and implications”)

Adapted from: Sjeberg, D., Dyb4, T., Anda, B., Hannay, J. Building Theories in Software Engineering, 2010.
Further information on: https:/ /goo.gl/SQQwxt

https://goo.gl/SQQwxt

Exemplary framework for describing theories
in Software Engineering

* Constructs: What are the basic elements?
(Actors, technologies, activities, system entities, context factors)

* Propositions: How do the constructs interact?
 Explanations: Why are the propositions as specified?

* Scope: What is the universe of discourse in which the theory is
applicable?

Source (framework): Sjoberg, D., Dyb4, T., Anda, B., Hannay, J. Building Theories in Software Engineering, 2010.
Source (example): Wagner, Mendez et al. Status Quo in Requirements Engineering: A Theory and a Global Family of Surveys, TOSEM 2018.

Exemplary framework for describing theories

rechcl — Example
[-]

Req Elicitation Technique

Interview

Scenario [P15 | Req Elicitation j:/
Prototyping L

Facilitated Meetings

Observation

Req Documentation Technique
Structured req list
Domain/business process model

Use case model]
Goal model Pe13 Req Documentation }— X a (O r S

Data model -

Non-functional req

Textual Req Engineer —
Semi-formal

Formal

Req Change Approach

Product backlog update 1420 L]
Change requests E— Req Change Management

Trace management

Impact analysis

Req Test Ali Approach
gzeer;::t;) Ze'(;:ter —b2r2e | Req Test Alignment — °
A tan: riteri.
pucepnce s e the()ry 1S
ndard licati * ege
b oo ot — | Proposition:
Control . .
Taioring “Structured requirements lists are documented

textually in free form or textually with constraints.”

‘—‘ Req Eng Process Standard ~ ————— Req Standard Definti
Compliance

Development

Tool support Explanation and Scope:

Quality assurance

Fasas | Project — “Free-form and constraint textual requirements are

Knowledge transfer

Process complexity sufficient for many contexts such as in agile projects

Communication demand

o e dsation where they only act as reminders for further
conversations.”

Req Improvement Means
Continuous improvement P 45-49

Req Eng Improvement ’—
Strengths/weaknesses L 9 =ng fmp
Own business unit/role

Source (framework): Sjeberg, D., Dyba, T., Anda, B., Hannay, J. Building Theories in Sottware Engineering, 2010.
Source (example): Wagner, Mendez et al. Status Quo in Requirements Engineering: A Theory and a Global Family of Surveys, TOSEM 2018.

Note: We don’t “test theories”, but

The Orie S and hyp O the Ses their consequences via hypotheses

Theory / Theories

Theory (Pattern) Hypothesis
Building

Building

(Tentative) Hypothesis

1

Falsification /
Corroborati

Empirical Approaches

(i.e. testable propositions)

Scientific theory

« “[...] based on hypotheses tested and verified
multiple times by detached researchers” (J. Bortz
and N. Doring, 2003)

Hypothesis

e “[...] a statement that Eroposes a possible

explanation to some phenomenon or event” (L.
Given, 2008)

 Grounded in theory, testable and falsifiable

+ Often quantified and written as a conditional
statement

If cause/assumption (independent variables)
then (=>) consequence (dependent variables)

From real world phenomena to theories and back:
The empirical life cycle

Theory / Theories

(Creative) Synthesis of an

: Abductyon explanatory case from a general rule
and a particular result (observation)

Theory (Pattern) Hypothesis
Bulldmg Building

I

Deduction

Application of a general rule
to a particular case,
inferring a specific result

Induction

Inference of a
general rule
from a particular
case/result
(observation)

(Tentative) Hypothesis

Falsification /
Corroborati

Empirical Approaches

T l Empirical Inquiries
o @ . .
Units of Analysis
II. Ill Sampling Frame

TSampling

4\
ln.‘

Source: Mendez and Passoth. Empirical Software
Engineering: from Discipline to Interdiscipline, 2018.

From real world phenomena
The empirical life cycle

Further reading and outlook

to theories and back:

The Journal of Systems and Software 148 (2019) 170-179

Contents lists available at ScienceDirect

SOFTWARE

The Journal of Systems and Software .

journal homepage: www.elsevier.com/locate/jss

Controversy Corner

Empirical software engineering: From discipline to interdiscipline ()

Ghook for
e

Daniel Méndez Ferndndez**, Jan-Hendrik Passoth"

*Software and Systems Engineering, Technical University of Munich, Germany
®Munich Center for Technology in Society, Technical University of Munich, Germany

ARTICLE INFO ABSTRACT

Article history:

Received 21 May 2018

Revised 9 November 2018
Accepted 15 November 2018
Available online 16 November 2018

Empirical software engineering has received much attention in recent years and coined the shift from
a more design-science-driven engineering discipline to an insight-oriented, and theory-centric one. Yet,
we still face many challenges, among which some increase the need for interdisciplinary research. This is
especially true for the investigation of social, cultural and human-centric aspects of software engineering.
Although we can already observe an increased recognition of the need for more interdisciplinary research
Keywords in (empirical) software such research come with challenges barely discussed
Empirical software engineering from a scientific point of view. In this position paper, we critically reflect upon the epistemological setting
Interdisciplinary research of empirical software engineering and elaborate its configuration as an Interdiscipline. In particular, we (1)
Symmetrical collaboration elaborate a pragmatic view on empirical research for software engineering reflecting a cyclic process for
Science & technology studies knowledge creation, (2) motivate a path towards symmetrical interdisciplinary research, and (3) adopt
five rules of thumb from other interdisciplinary collaborations in our field before concluding with new
emerging challenges. This supports to elevate empirical software engineering from a developing discipline
moving towards a paradigmatic stage of normal science to one that configures interdisciplinary teams and
research methods symmetrically.

© 2018 Elsevier Inc. All rights reserved.

yduc

Theory / Theories

¥
)

Theory (Pattern) [Hypothesis
Building Building

Abduci

Induction

(Tentative) Hypothesis L_U Deducdon

Falsification
Corroboratiop

Empirical Approaches

I l Empirical Inquiries

‘ ii Units of Analysis

Sampling Frame

I Sampling
ﬂ;\‘

(Creative) Synthesis of an
n explanatory case from a general rule
and a particular result (observation)

Deduction

Application of a general rule
to a particular case,
inferring a specific result

Preprint: https:/ /arxiv.org/abs/1805.08302

+ Epistemological setting of Empirical Software Engineering
* Theory building and evaluation
 Challenges in Empirical Software Engineering

"\ 1/

Engineering: from Discipline to Interdiscipline, 2018.

ipling Frame

Outline

« What is Empirical Software Engineering?

« What are the perspectives in Empirical Software Engineering?

Empirical Software Engineering

The ultimate goal of Empirical Software Engineering is to advance
our body of knowledge by building and evaluating theories.

Relevance from a theoretical and practical perspective: by
D VGn Y

¢ “@- .
NG
\\. >

about the discipline and (e.g. social) phenomena
involved

and limitations and effects of
artefacts (e.g. by evaluating technologies, techniques, |
processes, models, etc.) in their practical contexts &
PRACTICE

"

£
TES
;,\

What are exemplary scientific
Software Engineering Theories?

-- Which ones do you know? --

Scientific Theories in Software Engineering

Current state of evidence in Software Engineering

“[...] judging a theory by assessing the number,
faith, and vocal energy of its supporters [...] basic
political credo of contemporary religious maniacs”

— Imre Lakatos, 1970

* Addressing the situation in the quantum mechanics research community, an analogy

Example: Goal-oriented RE

Papers published [1]: 966

Papers including a case study [1]: 131 . -

Studies involving practitioners [2]: 20

Practitioners actually using GORE [3]: ~ 5%

[1] Horkoff et al. Goal-Oriented Requirements Engineering: A Systematic Literature Map, 2016

1
[2] Mavin, et al. Does Goal-Oriented Requirements Engineering Achieve its Goal?, 2017
[3] Mendez et al. Naming the Pain in Requirements Engineering Initiative — www.napire.org

Example: Goal-oriented RE

For comparison:

Icelanders believing in elves [4]: 54%

[4] https:/ /www.nationalgeographic.com/travel / destinations / europe /iceland / believes-elves-exist-mythology /

Practitioners actually using GORE [3]: ~ 5%

[1] Horkoff et al. Goal-Oriented Requirements Engineering: A Systematic Literature Map, 2016

[2] Mavin, et al. Does Goal-Oriented Requirements Engineering Achieve its Goal?, 2017
[3] Mendez et al. Naming the Pain in Requirements Engineering Initiative — www.napire.org

Current state of evidence in Software Engineering

—

Available studies often...

In favour /
corroboration

e ... remain isolated

... discuss little (to no) relation

to existing evidence Third-party claim

* ... strengthen confidence on own hopes g or cecond et
(and don’t report anything around) In most cases, we

* ... don’t report negative results are here

First or second party claim

Third-party claim

Against /

refueation | Evidence

O

Source (levels of evidence): Wohlin. An Evidence Profile for Software Engineering Research and Practice, 2013.

Conventional Wisdom in SE

“Leprechauns”: Folklore turned into facts

« Emerge from times where claims by R

authorities were treated as “facts” 1
[‘ ‘ LEPRECHAUNS

* Neglecting particularities R

of practical contexts l\® — gﬁgf géElNG ‘/'

 Reasons manifold:

 Lack of empirical awareness

* Neglecting relation to existing evidence

* No proper citations |
(one side of the medal, over-conclusions, etc.) HOW FOLKLORE TURNS INTO FACT AND WHAT T0 DO ABOUT IT

e Lack of data
. LAURENT BossauT

L — —

Exemplary symptoms: # NoEstimates

Don’t plan to fail! Or how to never
be late, never ever! #NoEstimates

« What are benefits and
drawbacks of #noestimates?

4.4 35 Project management methodologies involve some kind of estimates on

the content of the project (i.e. scope) and effort/duration (i.e. schedule). o Wh at are prOj e Ct

Simple techniques like WBS (work breakdown structure) with Gantt Charts or .

more complex techniques like PERT (Program Evaluation and Review Clrcumstance S /

Technique) involve estimating the content and ultimately the duration or effort . . .
ofeach characteristics under which

such philosophy applies?

»The key insight is this: spiraling delays are normal in

projects. They.are entirely predictable (gs in we So far: no evidence, no trade-
know they will happen), but also entirely

unpredictable (as in we don’t know which delays offs, no balanced discussion,

will spiral out of control). So we must prepare for but only rather ”religious”
them. [...] core principle of #NoEstimates: Always be discussions.

ready to stop the project and deliver value, at any time.”

Source (first post on this topic): http:/ / zuill.us/ WoodyZuill /2012 /12 /10 / no-estimate-programming-series-intro-post/

Exemplary “leprechaun”:
Go To statements considered harmful

1968

Edgar Dijkstra: Go To Statement Considered Harmful

Go To Statement Considered Harmful

Key Words and Phrases: go to statement, jump instruction,
branch instruction, conditional clause, alternative clause, repet-
itive clause, program intelligibility, program sequencing

i CR Categories: 4.22, 5.23, 5.24

EpITOR:

For a number of years I have been familiar with the observation
that the quality of programmers is a decreasing function of the
density of go to statements in the programs they produce. More
recently I discovered why the use of the go to statement has such
disastrous effects, and I became convinced that the go to state-
ment should be abolished from all “higher level” programming
languages (i.e. everything except, perhaps, plain machine code).
At’that time I did not attach too much importance to this dis-
covery; I now submit my considerations for publication because
in very recent discussions in which the subject turned up, I have
been urged to do so.

My first remark is that, although the programmer’s activity
ends when he has constructed a correct program, the process
taking place under control of his program is the true subject
matter of his uctivity, for it is this process that has to accomplish
the desired effect; it is this process that in its dynamic behavior
has to satisfy the desired speci ions. Yet, once the program has
been made, the “‘making” of the corresponding process is dele-

gated to the machine.
Ax

dynamic progress is only characterized when we also give to which
call of the procedure we refer. With the inclusion of procedures
we can characterize the progress of the process via a sequence of
textual indices, the length of this sequence being equal to the
dynamic depth of procedure calling.

Let us now consider repetition clauses (like, while B repeat A
or repeat A until B). Logically speaking, such clauses are now
superfluous, because we can express repetition with the aid of
recursive procedures. For reasons of realism I don’t wish to ex-
clude them: on the one hand, repetition clauses can be imple-
mented quite comfortably with present day finite equipment; on
the other hand, the reasoning pattern known as “induction’
makes us well equipped to retain our intellectual grasp on the
processes generated by repetition clauses. With the inclusion of
the repetition clauses textual indices are no longer sufficient to
describe the dynamic progress of the process. With each entry into
a repetition clause, however, we can associate a so-called ‘“dy-
namic index,” inexorably counting the ordinal number of the
corresponding current repetition. As repetition clauses (just as
procedure calls) may be applied nestedly, we find that now the
progress of the process can always be uniquely characterized by a
(mixed) sequence of textual and/or dynamic indices.

The main point is that the values of these indices are outside
programmer’s control; they are generated (either by the write-up
of his program or by the dynamic evolution of the process) whether
he wishes or not. They provide independent coordinates in which

 Public exchange based on reasoning by argument (rationalist arguments)...
... finally tackled by one empirical study nearly 50 years later.

] Edsger Dijkstra . Go To Statement Considered Harmful. Communications of the ACM, 1968.

] Frank Rubin. ”GOTO Considered Harmful" Considered Harmful. Communications of the ACM, 1969.

] Donald Moore et al. " 'GOTO Considered Harmful' Considered Harmful" Considered Harmful?" Communications of the ACM, 1987.
]

[
[
[3
[4] Nagappan et al. An empirical study of goto in C code from GitHub repositories, 2015.

Exemplary “leprechaun”:
Go To statements considered harmful

1968

Edgar Dijkstra: Go To Statement Considered Harmful

Go To Statement Considered Harmful

Key Words and Phrases: go to statement, jump instruction,
branch instruction, conditional clause, alternative clause, repet-
itive clause, program intelligibility, program sequencing

i CR Categories: 4.22, 5.23, 5.24

EpITOR:

For a number of years I have been familiar with the observation
that the quality of programmers is a decreasing function of the
density of go to statements in the programs they produce. More
recently I discovered why the use of the go to statement has such
disastrous effects, and I became convinced that the go to state-
ment should be abolished from all “higher level” programming
languages (i.e. everything except, perhaps, plain machine code).
At’that time I did not attach too much importance to this dis-
covery; I now submit my considerations for publication because
in very recent discussions in which the subject turned up, I have
been urged to do so.

My first remark is that, although the programmer’s activity
ends when he has constructed a correct program, the process
taking place under control of his program is the true subject
matter of his uctivity, for it is this process that has to accomplish
the desired effect; it is this process that in its dynamic behavior
has to satisfy the desired speci ions. Yet, once the program has
been made, the “‘making” of the corresponding process is dele-
gated to the machine.

Ax)

dynamic progress is only characterized when we also give to which
call of the procedure we refer. With the inclusion of procedures
we can characterize the progress of the process via a sequence of
textual indices, the length of this sequence being equal to the
dynamic depth of procedure calling.

Let us now consider repetition clauses (like, while B repeat A
or repeat A until B). Logically speaking, such clauses are now
superfluous, because we can express repetition with the aid of
recursive procedures. For reasons of realism I don’t wish to ex-
clude them: on the one hand, repetition clauses can be imple-
mented quite comfortably with present day finite equipment; on
the other hand, the reasoning pattern known as “induction’
makes us well equipped to retain our intellectual grasp on the
processes generated by repetition clauses. With the inclusion of
the repetition clauses textual indices are no longer sufficient to
describe the dynamic progress of the process. With each entry into
a repetition clause, however, we can associate a so-called ‘“dy-
namic index,” inexorably counting the ordinal number of the
corresponding current repetition. As repetition clauses (just as
procedure calls) may be applied nestedly, we find that now the
progress of the process can always be uniquely characterized by a
(mixed) sequence of textual and/or dynamic indices.

The main point is that the values of these indices are outside
programmer’s control; they are generated (either by the write-up
of his program or by the dynamic evolution of the process) whether
he wishes or not. They provide independent coordinates in which

1969

“GOTO Considered Harmful”
Considered Harmful

The most-noted item ever pub-
lished in Communications was a
letter from Edsger W. Dijkstra
entitled “Go To Statement Con-
sidered Harmful” [1] which at-
tempted to give a reason why the
GOTO statement might be harm-
ful. Although the argument was
academic and unconvincing, its
title seems to have become fixed
in the mind of every programming
manager and methodologist. Con-
sequently, the notion that the
GOTO is harmful is accepted al-
most universally, without question
or doubt. To many people, “struc-
tured programming” and “GOTO-
less programming” have become
synonymous.

 Public exchange based on reasoning by argument (rationalist arguments)...
... finally tackled by one empirical study nearly 50 years later.

1] Edsger Dijkstra . Go To Statement Considered Harmful. Communications of the ACM, 1968.

3

Donald Moore et al. " 'GOTO Considered Harmful' Considered Harmful" Considered Harmful?" Communications of the ACM, 1987.

[1]
[2] Frank Rubin. ”GOTO Considered Harmful" Considered Harmful. Communications of the ACM, 1969.
[3]
[4] Nagappan et al. An empirical study of goto in C code from GitHub repositories, 2015.

Exemplary “leprechaun”:
Go To statements considered harmful

1968

Edgar Dijkstra: Go To Statement Considered Harmful

Go To Statement Considered Harmful

Key Words and Phrases: go to statement, jump instruction,
branch instruction, conditional clause, alternative clause, repet-
itive clause, program intelligibility, program sequencing

i CR Categories: 4.22, 5.23, 5.24

EpITOR:

For a number of years I have been familiar with the observation
that the quality of programmers is a decreasing function of the
density of go to statements in the programs they produce. More
recently I discovered why the use of the go to statement has such
disastrous effects, and I became convinced that the go to state-
ment should be abolished from all “higher level” programming
languages (i.e. everything except, perhaps, plain machine code).
At’that time I did not attach too much importance to this dis-
covery; I now submit my considerations for publication because
in very recent discussions in which the subject turned up, I have
been urged to do so.

My first remark is that, although the programmer’s activity
ends when he has constructed a correct program, the process
taking place under control of his program is the true subject
matter of his uctivity, for it is this process that has to accomplish
the desired effect; it is this process that in its dynamic behavior
has to satisfy the desired specifications. Yet, once the program has
been made, the “‘making” of the corresponding process is dele-
gated to the machine.

Ax 2)

dynamic progress is only characterized when we also give to which
call of the procedure we refer. With the inclusion of procedures
we can characterize the progress of the process via a sequence of
textual indices, the length of this sequence being equal to the
dynamic depth of procedure calling.

Let us now consider repetition clauses (like, while B repeat A
or repeat A until B). Logically speaking, such clauses are now
superfluous, because we can express repetition with the aid of
recursive procedures. For reasons of realism I don’t wish to ex-
clude them: on the one hand, repetition clauses can be imple-
mented quite comfortably with present day finite equipment; on
the other hand, the reasoning pattern known as “induction’
makes us well equipped to retain our intellectual grasp on the
processes generated by repetition clauses. With the inclusion of
the repetition clauses textual indices are no longer sufficient to
describe the dynamic progress of the process. With each entry into
a repetition clause, however, we can associate a so-called ‘“dy-
namic index,” inexorably counting the ordinal number of the
corresponding current repetition. As repetition clauses (just as
procedure calls) may be applied nestedly, we find that now the
progress of the process can always be uniquely characterized by a
(mixed) sequence of textual and/or dynamic indices.

The main point is that the values of these indices are outside
programmer’s control; they are generated (either by the write-up
of his program or by the dynamic evolution of the process) whether
he wishes or not. They provide independent coordinates in which

1969

“GOTO Considered Harmful”
Considered Harmful

The most-noted item ever pub-
lished in Communications was a
letter from Edsger W. Dijkstra
entitled “Go To Statement Con-
sidered Harmful” [1] which at-
tempted to give a reason why the
GOTO statement might be harm-
ful. Although the argument was
academic and unconvincing, its
title seems to have become fixed
in the mind of every programming
manager and methodologist. Con-
sequently, the notion that the
GOTO is harmful is accepted al-
most universally, without question
or doubt. To many people, “struc-
tured programming” and “GOTO-
less programming” have become
synonymous.

1987

“‘GOTO Considered Harmful’
Considered Harmful” Considered
Harmful?

I enjoyed Frank Rubin’s letter
(“*GOTO Considered Harmful’
Considered Harmful,” March 1987,
pp. 195-196), and welcome it as an
opportunity to get a discussion
started. As a software engineer, I
have found it interesting over the
last 10 years to write programs
both with and without GOTO
statements at key points. There
are cases where adding a GOTO as
a quick exit from a deeply nested
structure is convenient, and there
are cases where revising to elimi-
nate the GOTO actually simplifies
the program.

 Public exchange based on reasoning by argument (rationalist arguments)...
... finally tackled by one empirical study nearly 50 years later.

1] Edsger Dijkstra . Go To Statement Considered Harmful. Communications of the ACM, 1968.

Frank Rubin. ”GOTO Considered Harmful" Considered Harmful. Communications of the ACM, 1969.
Donald Moore et al. " 'GOTO Considered Harmful' Considered Harmful" Considered Harmful?" Communications of the ACM, 1987.
4] Nagappan et al. An empirical study of goto in C code from GitHub repositories, 2015.

[
[
[
[

1

]
]
]
]

Exemplary “leprechaun”:
Go To statements considered harmful

Edgar Dijkstra: Go T/

Go To Statement Consider

Key Words and Phrases: go to
branch instruction, conditional ¢
itive clause, program intelligibil

i CR Categories: 4.22, 5.23, 5.24

EpITOR:

For a number of years I have be¢
that the quality of programmers
density of go to statements in the
recently I discovered why the use
disastrous effects, and I became ¢
ment should be abolished from al
languages (i.e. everything except,
At’that time I did not attach toc
covery; I now submit my conside
in very recent discussions in whicl
been urged to do so.

My first remark is that, althot
ends when he has constructed a
taking place under control of hi:
matter of his activity, for it is this
the desired effect; it is this process
has to satisfy the desired specificat
been made, the “making” of the

gated to the machine.
Ax

TOAR

2015

An Empirical Study of Goto in C Code from GitHub
Repositories

Meiyappan Nagappan', Romain Robbes?, Yasutaka Kamei®, Eric Tanter?,
Shane Mclntosh*, Audris Mockus®, Ahmed E. Hassan¢
'Rochester Institute of Technology, Rochester, NY, USA; ?Computer Science Department (DCC),
University of Chile, Santiago, Chile; *Kyushu University, Nishi-ku, Japan; *McGill University, Montreal,
Canada; °University of Tennessee-Knoxville, Knoxville, Tennessee, USA; ®*Queen’s University,
Kingston, Ontario, Canada
'mei@se.rit.edu, *{rrobbes, etanter}@dcc.uchile.cl, *kamei@ait.kyushu-u.ac.jp,
‘shanemcintosh@acm.org, *audris@utk.edu, ‘ahmed@cs.queensu.ca

ABSTRACT

It is nearly 50 years since Dijkstra argued that goto ob-
scures the flow of control in program execution and urged
programmers to abandon the goto statement. While past
research has shown that goto is still in use, little is known
about whether goto is used in the unrestricted manner that
Dijkstra feared, and if it is ‘harmful’ enough to be a part of
a post-release bug. We, therefore, conduct a two part em-
pirical study - (1) qualitatively analyze a statistically rep-
resentative sample of 384 files from a population of almost
250K C programming language files collected from over 11K
GitHub repositories and find that developers use goto in C
files for error handling (80.21+5%) and cleaning up resources
at the end of a procedure (40.36 & 5%); and (2) quantita-
tively analyze the commit history from the release branches
of six OSS projects and find that no goto statement was re-
moved/modified in the post-release phase of four of the six
projects. We conclude that developers limit themselves to
using goto appropriately in most cases, and not in an un-
restricted manner like Dijkstra feared, thus suggesting that
goto does not appear to be harmful in practice.

Harmful [11]. This is one of the many works of Dijkstra
that is frequently discussed by software practitioners [25]
and researchers alike (more than 1,300 citations according
to Google Scholar and almost 4000 citations according to
ACM Digital Library as of Aug 15, 2014). This article has
also resulted in a slew of other articles of the type global
variables considered harmful [32], polymorphism considered
harmful (24], fragmentation considered harmful [16], among
many others. In fact, Meyer claims that as of 2002, there
are thousands of such articles, though most are not peer-
reviewed [15].

Indeed, Dijkstra’s article [11] has had a tremendous im-
pact. Anecdotally, several introductory programming courses
instruct students to avoid goto statements solely based on
Dijkstra’s advice. Marshall and Webber [19] warn that when
programming constructs like goto are forbidden for long
enough, they become difficult to recall when required.

Dijkstra’s article on the use of goto is based on his de-
sire to make programs verifiable. The article is not just an
opinion piece; as Koenig points out (7], Dijkstra provides
strong logical evidence for why goto statements can intro-
duce problems in software.

“We conclude that developers
limit themselves to using goto
appropriately, [not] like Dijkstra
feared, [thus] goto does not
appear to be harmful in practice.’

 Public exchange based on reasoning by argument (rationalist arguments)...
... finally tackled by one empirical study nearly 50 years later.

Edsger Dijkstra . Go To Statement Considered Harmful. Communications of the ACM, 1968.
Frank Rubin. ”GOTO Considered Harmful" Considered Harmful. Communications of the ACM, 1969.
Donald Moore et al. " 'GOTO Considered Harmful' Considered Harmful" Considered Harmful?" Communications of the ACM, 1987.

Nagappan et al. An empirical study of goto in C code from GitHub repositories, 2015.

4

Key Takeaway

 The current state of evidence in
Software Engineering is still weak
* Practical relevance and impact?

* Potential for transfer into practice and
adoption?

* But there is hope...

 Importance of empirical research
recognised

 Growth of a strong research
community over last two decades

“Close enough. Let’s go.”

Outline

« What is Empirical Software Engineering?

« Why do we need Empirical Software Engineering?

Empirical Software Engineering Community

-
N
3
3
-
S
-
-
-
e
g 2

Goals and perspectives in
Empirical Software Engineering

1. Provide tools and methods for empirical research
2. Establish strong Software Engineering theories

3. Eradicate conventional wisdom (“leprechauns”)

Various settings

* Industry settings

* Research initiatives from the community
 Publicly funded research projects

Sl

0

i lis e o Lhig:
RS EN S E=N e iy
£z 5 = z E
§;§§ E‘E =58 '~ <S8 =
L S8 7E BIE. D E Q.=
g S8 § DE d D=
Sgfie EE S (N E
£ ST S =S] | D15 g
8 S 8IS g 5k
S5 S:giE B 5]
S ——— == B2g8:
1 JEIS SEEiE £
] . B B 54
odl 22 B2EN T S8
©® pmd i = =55 &3
== ©. .
D=
i ;

delin
multivariat

ctation
paﬂel i o ¢ b
distributi

-~ 10

€y
€5S100

s el distribution |
estimation SIm
:“:.:"methodolugy st ime-series

method linear " stfist
qu

pragbm
sl pafing 11C S
e moltlesel Spatial

multiple-«

g
£
g
2
£
g
H

clustering

stud

-~
mi;ed
O review
- mean coefficient
. P sample culy 7,0
variable equation ki
desisioo-making business
“ experiments &
index
asur

mming

ariance

a . evaluation
logit e "
qestionzive

po

ariables

recast

) g } problems personality ees

design Pro

I\
game
m

experiment =

=

s ierarchica

™ dynamic bayesian "%’

dataze=
o WS asing g
I
“Droble

networ

titative
es wiisie dacigjon
alal | oroh .

sampling
ehl

! o e pa
J
y

4, Probability 5
testing .
= stochastic’s
—
tical o

Example 1:
Industry setting
(as part of a Academia-industry collaboration)

SIEMENS
Ib\g,%uf(yforb‘fe

Challenge: Role and Relevance of RE to Business Success unclear
Goal: “Find the proper Problem before solving it properly”
Exemplary question: “How does Customer Satisfaction depend on RE?”

How relevant is RE to business success?

1. How is RE conducted
at project level?

[How does customer
satistfaction depend on
factors in RE?

Document ——
Analysis —

R e S
P

Interviews —7=

3. What factors do

influence the way RE is
conducted?

[] 0 043 oos o
e et
I l 1| le Ermetung won Projest. 0 em o002 038
Karviarien etoedetan
Es - Q08 007 o
@ on AW
S Homgeesta
l Ir‘7e Sy Securny
Propesizel reles art
L

Zinaverenarten tekant

B s Rankk e nach Kendall
(Erfussiskion entweder Prozestegemchall o Projekisigesschaft)

How does Customer Satistaction depend on RE?

* Interviews of different roles in different project settings
* Root cause analysis of customer satisfaction to phenomena in RE

Customer

Satisfaction

RE is a recognised basis for...

NER nicht oder unzureichend s n.ﬂnmwn ng, Usal ouyem M ement
U olistan dx‘l rdghungen Emergen ycr géq est (von Kunde)
Gleiches Verstindnis/ Pra gma’ QuhwldaAnf'd Jngen Ma «.y

. effective product and portfolio management feature sizing, and project organisation
(feature planning, prioritisation, and Slzmg, resource and expertise planning, technology prioritisations)

it /
/ 1\ /‘ /i 74 A\ . -
"y Ao 7 Q\ 1 SR iror | inton ontiinca

. clear (dev.) process interfaces, responsibilities, and liability in distributed environments

Techn k.- arun g) ’ N |) Vertrel ’m g
| /

. effective risk management and 1dent1f1cat10n of moving target (and wicked problems)
(basis for “good- enough RE’ and potent1a1 1nfu51on of new RE techniques such as Design Thinking)

satz { ‘ F et
.A odelleh "r] ‘]] { ruhzeltige Kommunikatio§ GBer Proje
Y | |

. (regulatory) compliance: safety, security, and usability

T T | T R eTTUETF ATSCTOuy

)i

. increased stakeholder involvement and participation (accountability but also motivation)

Personal Ausschr@rg und Abriahme | i /rrﬁng neering u. Busin

(..n)

Kommunikation{liden Uberdricken Hohe fun k@l le Qualitat

dm)

1S a recog

nised basis for...

D By

Perfo ce, Warding, Usabiity, @tfijierfles S Management

> Emergency Chang@quesl (von Kunde)
i Mark@ysen

@

USPs

Einbindung ygr@\énenexpenen
Effiziente s@gieplanung

¥ Fﬁhmﬁbw&mﬁ@ Uber Lieferumfange

Hohe Anz*

auC i Lastel

Architekten bei Angebol@llung nicht eing

Venne@hmng
Effiziente An@:lsarslallu
Einheitiche Va@svmslell
Frihzeitige Kommunikalior Projet
Abnar;rv;e@en unkla

Nedfgece

(%

e
a4

Gute Kund@nmunikamn
@

N
Unklare Erwanbn der Kun&en

ing de@r Tests

(insb. NFR)

\
Ausgepragte §o"ls dehMi aroeita‘r\

| B L T ing
vangoBS am‘m@.mm@agm@mv

Example 2:
Research initiatives

Background: Requirements Engineering research often dominated by
conventional wisdom

Challenge: What research topics are of high practical relevance?

[Y
0. 000 What are practices and problems in practical
:‘ .: *NapiRe Requirements Engineering environments?
How do practitioners perceive the relevance of
‘ :; Pract contributions by the RE research community?
(. How do practitioners perceive the relevance of
= RE standards?

Exemplary initiatives in context of IREB working group (“IREB Research”)

apire L VAMING the Pain in Requirements Engineering

Objectives: Build theory on RE practices used in industry and
on problems practitioners experience

Research method: Large-scale survey research

Practices Problems, causes, and effects

WWww.napire.org

First theory on Requirements Engineering practices and
problems supporting problem-driven research

Causes

Context Effects

Lack of experience of RE team members
Lack of time
twok-olaWel-defined RE process

team and
w-ak aifcaton of RE loam membors

remain 10o
Mmmn direct communication 1o custol
Uncloat 10163 and roSpOraonsibiies a customor sido
Customer doos not know what he wants

nsufficiont agility
M.umg cusiomer involvoment

Conflicting stakeholder viewpoin
Solution orientration

Misaing domain knowlodgoe

Missing engagement mor

Poor requirements el.cnanon technicues

me overrun. =
Anou ficiont inform -

uage bariers Poor product quality.
70 Onciaarterminaiogy Budget overrun-==
Yolatio indusiry segmon that leads to changes USTACTON =
/Y ompiexity of domain ___Customor issar
77 thh ‘workioad c offrcioncy
insufficient resources . Misunderstanding (overany—
Z Lack of discipline s = Decroascd business vase = .
7 Sirter ::;.":n';'ézﬂ"::’ by customer M.incomplete and / or bidden reguirements - Z Inefficient dovelopment—— .
Stome: — - Effort overrur—
— plexity of RE - C flaws Us.and tho- n of
— inability 1o spucufy measurable non-functional requirements . o e
/ — Misaing tool sUpPROrt . . m nrgau {changing goats, o & itk pepiestiavt i ~
Z e otaare kit businoss Vislan hd GRaasmene and. wu, Sommunication— N
7 — Uneclear business neecs = = '“'h‘ e mm"‘“’ o "‘”‘-“B B‘bﬁsPnW
P — Unclear project scope -_Time boxing / Not enough time in gereral A maneageability —
g — Missing concentration on business neads = of ciffreutt—
- o e B e i -_Communication flaws within m MN e Nood for post implomerrtator—
— Subjeciive Intempratatons with nte from provious)y & knowgo OB
— Z — Compocmy of project e e = roquuemmm quall\y (generaly — Project Completed
- PP 'hcrensou number
— m;: z LI mnmrk of 8 ——inconsiStont reqUIroments - >, Incroasoc n;ambor S TedOrew s oo —
-——Weak aCCeS: Tomer need: nd.{
Mizsing of a global view of the sysiom ST L = e Miesing. funtionaiiy of W‘;“,c, -
~ — Missing priortization by cusiomer =—timclearresponsibilities == Wrong en - Project Failed
Missing ro 5 ——tmsing traceasility x Poor (Systom) do,,g,, oty —
— Missing willingless to change == Gold plating S Poor documentation of —
- 5;3;;‘;32;3::"% for innovation of s comain O oD Deooms ke — Unknown =
VOl OGO —mmq between high degree of innovation anamwwﬂ%mwwmng 7i plote / unkr) req 1
Woax quailiicaton of stakeholders ional i Decreased test efficiency —
——Sonticioy Intorests at-cuslomer sida i ——Tervmrvolog-cnl probiema [formasion gos sk
— M«aatrcug?!é a%’ﬂ?;ﬁ%%g“&??;;; cg‘“‘"“‘" . usiomers business domain regarding, ©.g.. changing poinis of or
Thinking in legacy systom: ship to cu Splution orientatior —
— Conflict o(lnloresls at mnnsgomonl teve! ally q s e Rl —
o O ——insuficient support by project lead Pes Olfficult X -
— insuflicient resource \ e atonane guaity —
Mhissing Company wide standard ol LT T A
— Missing ovovemeont of developete Dolayed detection of bugs and v:mmss
— Uravallabiity of foauiroments engincar ?u'ﬁvcd :°',;:§'°flv,°' ’rgg;,-,g,g,ﬁ;, TRE =
nereased difficulty of impact s0s
Wond'oou ot customer - ook of Innovation

— Oocum \Syernoad Untestable requirements
— msumclemc-o DbO'O!IOﬂ in process Dlmcumefl?\ng;g;w‘mrlan ﬂ'&""":gm
— Need for support by a more expefienced develop
M,B"eru;.?mggaop e Woeak knowledge tranafor
Non functonal rcqu:romanm unclear Wrong sizing of hardware
commummtlon plan

Cu v 4508 Not formally approve the requirements
FauMIont analysis o1 The DatAnang OF 198 projoct
Lack of trust

Missing access 1o business needs
Mizsing IT project experience at customer side
u cns m o roqu uirements

Hlah qum«y nxpocmuon of customer

J [

out customers domain
mnn:'?lmnnngomrl
i

Oversized portfolio planning
Prossure (o not excosd pnmlnnnly_ defined resources

Stakenholcor fluctiation
Team fluctuaton

See yourself and play with the interactive data visualisation:
www.napire.org

The NaPiRE Project Data and Publications NaPiRE Data Visualisation

Explore NaPiRE Data
Interactive data visualisation

o .
0.0

°.®,.0 _Naming the Pain in
‘e’ e NaPiRE

Create Custom Visualisations

Naming the Pain in Requirements Engineering (NaPiRE) constitutes a globally distributed family of surveys on Requirements Engineering (RE) practices and
problems, initiated by Daniel Méndez and Stefan Wagner in 2012. It is nowadays conducted by an internationally distributed alliance of software engineering
researchers with the goal to help the research community getting a better understanding of general industrial trends in Requirements Engineering (RE) and problems
faced therein. NaPiRE is an academic (non-profit and open) endeavour which aims at establishing the first holistic theory on industrial practices and problems in RE.

We started NaPiRE by elaborating an initial theory via synthesising results of existing, isolated studies in RE and running initial surveys in Germany and the
Netherlands. Soon, NaPiRE became a large-scale and long-term collaboration between members of the empirical software engineering research community which
now runs NaPiRE as a bi-yearly family of replicated surveys. The research initiative is run by the community with the purpose of serving the community and

constitutes the first and largest of its kind.

Each survey replication strengthens the initial theory and extends it with a particular focus on:

e the status quo in company practices and industrial experiences,
e problems and how those problems manifest themselves in the process, and
e what potential success factors for RE are.

See yourself and play with the interactive data visualisation:
www.napire.org

The NaPiRE Project Data and Publications NaPiRE Data Visualisation

Overview | Characterisation | Practices | Problems | Customer Relationship

In this section you can explore the data of the most recent NaPiRE : ‘ ‘. o
survey run. It is organized according to the main sections of the
survey,

o the characterization of the organisation,

¢ their documentation & elicitation techniques,

o their problems regarding requirements engineering,
e and their rating of their customer relationship

By opening the filter section on the far left side, you can adjust the
underlying dataset for the visualizations

Note: This is the public beta version of the visualisation
of the NaPiRE Dataset 2018 which will be continuously
updated and extended.

Summary
———jumber of Surveys: 488
¥
Average Team Size: 27 o /

Top Development Process: Rather plan-driven

Average Respondent's 9 Years
Experience:

Average Relationship to neutral
Customer:

Average Satisfaction in RE: Very satisfied

See yourself and play with the interactive data visualisation:

www.napire.org

The NaPiRE Project Data and Publications NaPiRE Data Visualisation

Filter Panel

You can make use of several different filters to only
display data which matches specific criteria.

Company Characteristics v

Requirements Elicitation Techniques v

Requirements Documentation Techniques

Requirements Problems v

Rated Causes, Problems & Effects v <

Reset All Apply Filters

See yourself and play with the interactive data visualisation:
www.napire.org

Quiz

What is the most frequently stated
problem companies face in RE when
using a rather agile software
development process model?

(2) Incomplete or hidden requirements

@ Unprecise / Unmeasurable requirements

@ Communication problems

* Prize
Ericsson Space sweater ©

See yourself and play with the interactive data visualisation:
www.napire.org

Quiz

What is the most frequently stated
problem companies face in RE when
using a rather agile software
development process model?

‘ Incomplete or hidden requirements

O Unprecise / Unmeasurable requirements

O Communication problems

* Prize
Ericsson Space sweater ©

Example 3:
Publicly funded research projects

S.LR.I

reThink=reThought

Background: Empirical software engineering is advancing already, but it
needs to integrate multiple competences:

* Data-centric automation
* Value orientation
* Human-centricity

Goal: Extend empirical SE to solve next generation SE problems.

https:/ /rethought.se

See yourself: www.rethought.se

Challenges for the Next Generation Software Engineering

Support Summarize Partner Company
= = ‘—’ ‘—’
[State-of-art] o Challenges Collect [Nagis

Based on Solved by
SP2: Heterogeneousg_]
___________ Requirements Engineerin el
[SP1: AugmenteilLJ [SP3 Value-oriented]
Automated Testin waste mirl‘i\mization
: co-production i
[SP4 Cognitive Software] [SP6: Requirements]

Human Focused Data Focused
Software Engineering Software Engineering
\\
engineering models rveriﬁcation and conformance

------------- SP5: LeaGile teams }.----"“""

and organizations

Value Focused
Software Engineering

SE Rethought: Solutions for the Next Generation Software Engineering

CATALYSTS

o

—

ERICSSON

S

. VOLWVO

Volvo Construction
Equipment

@ Swedbank @

QTEMA

QUALITY & TEST MANAGEMENT

product management

Handelsbanken

\Z SONY

1”\M|i

MaxKompetens

Smaféretagens basta van

g Telia Company

mePeopleGroup

Outline

« What is Empirical Software Engineering?
« Why do we need Empirical Software Engineering?

« What are the perspectives in Empirical Software Engineering?

Key Takeaways

Sci hmehdh
hgd tlm th l fmp cism* t

Empirical research is important to turn
software engineering into a scientific discipline

The state of evidence in Software
Engineering is still weak

Empirical Software Engineering Community

The growth of a community of empirical
researchers and practitioners is promising

We are now entering the next generation of
empirical Software Engineering research

