
DEVS Training Course

Introduction to DEVS

Prof. Dr. Valdemar Vicente Graciano Neto

1

Short Bio

Dr. Valdemar Vicente Graciano Neto

● Double degree PhD in Computer Science Brazil/France;

● Experience with DEVS since 2016: research, training

and supervision;

● Contributor to the Modeling and Simulation Body of

Knowledge (MSBoK), to be published by Springer;

● Adoption of DEVS in his PhD to model and simulate

software-intensive systems, including Flood Monitoring

System and the Brazilian Space System;

● Tutorial using DEVS in ECSA 2021 and CBSoft 2021;

● Assistant Professor permanent position at the Federal

University of Goiás, in Brazil, since 2014.

● More: https://dblp.org/pers/hd/n/Neto:Valdemar_Vicente_Graciano 2

M&S

� Modeling and Simulation (M&S);

� Definition 1 (Banks 1999):

“A simulation is an approximate imitation of the operation
of a process or system”.

 J. Banks; J. Carson; B. Nelson; D. Nicol (2001). Discrete-Event System Simulation. Prentice Hall. p. 3.
ISBN 978-0-13-088702-3.

3

M&S

� Modeling and Simulation (M&S);

� Definition 2 (MSBOK 2021):

“Simulation is providing experience under controlled
conditions for training, i.e., for gaining/enhancing
competence in one of the three types of skills:

(1) motor skills (virtual simulation, or use of simulators),

(2) decision and/or communication skills (constructive
simulation such as business games, war games, or
peace games; aka serious games), and

(3) operational skills (live simulation). 4

DEVS
(Discrete-Events Systems

Specification)

5

DEVS

� A formal notation based on:

– Atomic models (Parts)

– Coupled models (a whole composed of other
parts)

� There are several DEVS specifications:

– Python;

– Java;

– ...

6

DEVS

� MS4ME

– Based on Eclipse and Java

– Supported by DEVSNL (DEVS Natural
Language)

– Animation

– It allows the specification of sequence
diagrams

7

DEVS

� Why you need DEVS for complex SoS M&S and how
DEVS can provide better solutions than other
commercial tools?

8

DEVS

� Why you need DEVS for complex SoS M&S and how
DEVS can provide better solutions than other
commercial tools?

9

DEVS

� Why you need DEVS for complex SoS M&S and how
DEVS can provide better solutions than other
commercial tools?

10

DEVS

� Why you need DEVS for complex SoS M&S and how
DEVS can provide better solutions than other
commercial tools?

11

DEVS

� MS4ME

– Atomic models are composed of:

• Data types

• Events

• Input and Output Ports

• A state machine to specify behaviors
(Mealey Machine - IOST)

12

DEVS

� MS4ME

– Atomic models are composed of:

• Data types

• Events

• Input and Output Ports

• A state machine to specify behaviors
(Mealey Machine - IOST)

It can have less than all that, ok?!

13

DEVS

� Introduction to MS4ME

– Open the simulation environment

– Create or use a workspace (don't forget to
save it)

– Create a DEVS Modeling Project

– Create a .SES (System Entity Structure –
Coupled Model) file

– Create specific Atomic models

14

DEVS

� MS4ME

– Hello World DEVS – two systems exchanging
messages;

– First:

● Building the simulation using Activity
Diagram;

15

DEVS

� MS4ME instructions
– Create a new DEVS Modeling Project with name

Hello;
– In MS4Me Launch Page, select “Sequence

Diagram” > Create New;
– Specify the model;
– Save it;
– Create > Model;
– Prune SES into PES;
– Run PES in SimViewer.

16

A brief look into Atomic Models

17

DEVS

� General Rule for Specification of an Atomic Model
State Machine:

– Communication between two systems is only
possible if one system is in the sending state
and the other is in the receiving state.

– “Pattern” for States specification:
DEVS Input:
passivate in << fromState > >!
when in << fromState > > and receive <<dataReceived > > go to << toState > >!
//external transition!

DEVS Output:
hold in << fromState > > for time 1!
after << fromState > > output << dataType > >!
from << fromState > > go to << toState > >! //internal transition!
<<hold or passivate again to>> <<toState>>!

Source: Valdemar V. Graciano Neto, Wallace Manzano, Adair José Rohling, Mauricio Gonçalves Vieira Ferreira, and Tiago Volpato, Elisa Yumi
Nakagawa. 2018. Externalizing Patterns for Simulations in Software Engineering of Systems-of-Systems. In Proceedings of SAC 2018:
Symposium on Applied Computing, Pau, France, April 9–13, 2018 (SAC’18), 8 pages. https://doi.org/10.1145/3167132.3167313

18

DEVS

� Example DEVSNL

� HelloWorld.ses

� SES code:

From the top perspective, sequenceDiagram is made of Someone and Another!

From the top perspective, Someone sends Message to Another!

19

DEVS

� Exemplo DEVSNL

� Someone.dnl

//State Machine!
to start hold in s0 for time 2!
after s0 output Message!
from s0 go to s1!
passivate in s1!

20

DEVS

� Example DEVSNL

� Another.dnl

to start passivate in s0!
when in s0 and receive Message go to s1!
passivate in s1!

21

Exercise

1) Modify the code so that Another also sends
messages to Someone and they exchange messages
continuously.

22

DEVS Training Course

Introduction to DEVS

Prof. Dr. Valdemar Vicente Graciano Neto

23

