DEVS Training Course

DEVS Programming - Part 1

Prof. Dr. Valdemar Vicente Graciano Neto

From the last class...

Hello World
Atomic Models
Coupled Models

Message exchange between systems

In this class

Data Types

Specifying ports

Changing the messages content
Accessing message content
Events

Processing with Atomic Models

DEVS

Every Atomic Model generates a corresponding Java
code;

Non-primitive data types (ie, from Java libraries)
must be explicitly imported.

Motivational example

1 Flood Monitoring System with 2 Sensors and 1
Gateway

View from top ” ,\‘q PN N NN NS, "

Gateway

.l. Mediator
‘ CC)) Sensor - Constituent
I
! :

distance i Direction of

\ (@2 Communication

“ %4
A SN NN NN NN NN NN NG NN N NN SN EENSEEENEEEEEEEEEEEE®

——River's flow sense—>»

DEVS

1 Create a Project named ReducedFM

» SimulationFM.ses

From the top perspective, SimulationFM is made of Sensor1, Sensor2 and Gateway!

From the top perspective, Sensor1 sends Depth to Sensor2!
From the top perspective, Sensor2 sends Depth to Gateway!

= HelloWorld.ses EE -

@ Imissing ' at 'and'pr: It happens if you don't put the

From the top per: comma before the ‘and’.
From the top per:

DEVS

1 Create a Project named ReducedFM

1 SimulationFM.ses

From the top perspective, SimulationFM is made of Sensor1, Sensor2 and Gateway!

From the top perspective, Sensor1 sends Depth to)Sensor2!
From the top perspective, Sensor2 sends DEpth to Gateway!

DEVS

: Canonical Code of the Atomic Model
- Declaration of data types
- Instance Variables declaration
~ Ports declaration
~ Variables initialization
-~ State machine specification
~ Events

DEVS

o Create three atomic models: Sensor1, Sensor2, and
Gateway.

o Logic:
— Generates the data
— Put the data in the output port
— Send data

0

DEVS

Sensorl.dnl

— Datatype declaration

A Depth has a value!
the range of Depth's value is Integer!

10

DEVS

Sensorl.dnl

— Respective Instance Variable

use measureData with type Depth!

11

DEVS

Sensorl.dnl

Output port specification

generates output on Depth with type Depth!

12

DEVS

Sensorl.dnl

— Variables initialization

Initialize variables

<%

java.util.Random gerador = new java.util.Random();
int number1 = gerador.nextint(10);

measureData = new Depth(number1);
%>!

— You can also do it in an internal event

//On the transition for s1, perform the assignment!
Internal event for sO

<%

measureData = new Depth(new Integer (1));

%>!

13

DEVS

Sensorl.dnl
— State Machine - Sensor1

— First transition initializes variables once this was
defined to happen via Internal Event. After; it sends
the data and waits another second.

to start hold in sO for time 1!
from sO go to s1!

hold in s1 for time 1!

after s1 output Depth!

from s1 go to sO!

14

DEVS

Sensorl.dnl

— Output event - sensor outputs the datal!

//On the transition going out from the state sO, perform the
actions!

output event for sO

<%

output.add(outDepth, measureData);
%>!

15

DEVS

A Depth has a value!

S ensor 1 . dnl CO de the range of Depth's value is Integer!

use measureData with type Depth!

generates output on Depth with type Depth!

Initialize variables

<%

java.util.Random gerador = new java.util.Random();
int number1 = gerador.nextint(10);

measureData = new Depth(number1);

Y%>!

to start hold in s0 for time 1!
from s0 go to s1!

hold in s1 for time 1!

after s1 output Depth!

from s1 go to sO!

//On the transition for assigned, perform the assignment
Internal event for sO

<%

measureData = new Depth(new Integer (1));

Y%>!

//On the transition going out from the state, perform the actions
output event for s1

<%

output.add(outDepth, measureData);

%>!

DEVS

Sensor2.dnl

— It should be specified to receive the same type of
data.

A Depth has a value!
the range of Depth's value is Integer!

use measureData with type Depth!

accepts input on Depth with type Depth! //environment
//sense

generates output on Depth with type Depth!

Initialize variables

<%

measureData = new Depth();
%>!

17

DEVS

Sensor2.dnl

— State machine

to start passivate in s0O!

when in sO and receive Depth go to s1!
hold in s1 for time 1!

after s1 output Depth!

from s1 go to s2!

passivate in s2!

18

DEVS

SensorZ2.dnl
— Events (Input and Output)

e [t should send the same type of data received

external event for sO with Depth
<%
measureData = (Depth) messageList.get(0).getData();

%>1

//On the transition going out from the state, perform the
actions

output event for s1

<%

output.add(outDepth, measureData);

%>!

19

Sensor2.dnl code

DEVS

A Depth has a value!
the range of Depth's value is Integer!

use measureData with type Depth!

accepts input on Depth with type Depth! //environment //sense
generates output on Depth with type Depth!

Initialize variables

<%

measureData = new Depth();
%>!

to start passivate in s0!

when in sO and receive Depth go to s1!
hold in s1 for time 1!

after s1 output Depth!

from s1 go to s2!

passivate in s2!

external event for sO with Depth
<%
measureData = (Depth) messagelList.get(0).getData();

%>!

//On the transition going out from the state, perform the actions
output event for s1

<%

output.add(outDepth, measureData);

%>!

DEVS

Gateway.dnl

— It receives and verifies the data

A Depth has a value!
the range of Depth's value is Integer!

use measureData with type Depth!
accepts input on Depth with type Depth! //fenvironment //sense

to start passivate in s0O!

when in sO and receive Depth go to s1!
hold in s1 for time 1!

from s1 go to sO!

external event for sO with Depth
<%
for(inti = 0; i < messagelList.size(); i++){

Depth valueReceived = (Depth)messagelList.get(i).getData();
int value = (int) valueReceived.getValue();
System.out.printin("Value: " + value);

%>

DEVS

Remarks

— There are 3 types of events: internal, external and
output,

m Internal: you can associate with a
simple/internal transition (to perform
something, with no input nor output);

m Output: the event you associate with states that
output data;

m External (could be named “Input”): the event
you use to receive data;

22

DEVS

Remarks
» The state machines of an Atomic Model are
deterministic.

» It means that:
— A same passivate state can have multiple external
transitions (one for each input) in different ports;
— A hold state should have only one transition
(internal or output)

23

DEVS - From Class 00

1 General Rule for Specification of an Atomic Model
State Machine:

— Communication between two systems is only
possible if one system is in the sending state
and the other is in the receiving state.

— “Pattern” for States specification:

DEVS Input:

passivate in << fromState > >!

when in << fromState > > and receive <<dataReceived > > go to << toState > >!
/lexternal transition!

DEVS Output:

hold in << fromState > > for time 1!

after << fromState > > output << dataType > >!

from << fromState > > go to << toState > >! //internal transition!

<<hold or passivate again to>> <<toState>>!
Source: Valdemar V. Graciano Neto, Wallace Manzano, Adair José Rohling, Mauricio Gongalves Vieira Ferreira, and Tiago Volpato, Elisa Yumi
Nakagawa. 2018. Externalizing Patterns for Simulations in Software Engineering of Systems-of-Systems. In Proceedings of SAC 2018: 24
Symposium on Applied Computing, Pau, France, April 9-13, 2018 (SAC’18), 8 pages. https://doi.org/10.1145/3167132.3167313

Exercises

1) Change the Flood Monitoring specification so that the
data sent continuously reaches the Gateway;

2) Modify Sensor1 to send random numbers!

3) Modify Sensor2 to not only forward data, but also to
send sensed data through it.

4) Add a new element in the Simulation called
StimuliGenerator. It should create random values and
send them to sensors. Create one for each sensor.

5) Add a clause to the Gateway: if the value is greater than 2
(meters), trigger an alarm.

25

Next class

- Working with files;

- Composing models and changing perspectives.

26

