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Short Bio

Dr. Valdemar Vicente Graciano Neto

● Double degree PhD in Computer Science Brazil/France; 

● Experience with DEVS since 2016: research, training 

and supervision;

● Contributor to the Modeling and Simulation Body of 

Knowledge (MSBoK), to be published by Springer;

● Adoption of DEVS in his PhD to model and simulate 

software-intensive systems, including Flood Monitoring 

System and the Brazilian Space System; 

● Tutorial using DEVS in ECSA 2021 and CBSoft 2021; 

● Assistant Professor permanent position at the Federal 

University of Goiás, in Brazil, since 2014.

● More: https://dblp.org/pers/hd/n/Neto:Valdemar_Vicente_Graciano 2



M&S

� Modeling and Simulation (M&S);

� Definition 1 (Banks 1999):

“A simulation is an approximate imitation of the operation 
of a process or system”.

 J. Banks; J. Carson; B. Nelson; D. Nicol (2001). Discrete-Event System Simulation. Prentice Hall. p. 3. 
ISBN 978-0-13-088702-3.
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M&S

� Modeling and Simulation (M&S);

� Definition 2 (MSBOK 2021):

“Simulation is providing experience under controlled 
conditions for training, i.e., for gaining/enhancing 
competence in one of the three types of skills: 

(1) motor skills (virtual simulation, or use of simulators),

(2) decision and/or communication skills (constructive 
simulation such as business games, war games, or 
peace games; aka serious games), and 

(3) operational skills (live simulation). 4



DEVS
(Discrete-Events Systems 

Specification)
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DEVS

� A formal notation based on:

– Atomic models (Parts)

– Coupled models (a whole composed of other 
parts)

� There are several DEVS specifications:

– Python;

– Java;

– ...
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DEVS

� MS4ME

– Based on Eclipse and Java

– Supported by DEVSNL (DEVS Natural 
Language)

– Animation

– It allows the specification of sequence 
diagrams
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DEVS

� Why you need DEVS for complex SoS M&S and how 
DEVS can provide better solutions than other 
commercial tools? 
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DEVS

� MS4ME

– Atomic models are composed of:

• Data types

• Events

• Input and Output Ports

• A state machine to specify behaviors 
(Mealey Machine - IOST)
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DEVS

� MS4ME

– Atomic models are composed of:

• Data types

• Events

• Input and Output Ports

• A state machine to specify behaviors 
(Mealey Machine - IOST)

It can have less than all that, ok?!
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DEVS

� Introduction to MS4ME

– Open the simulation environment

– Create or use a workspace (don't forget to 
save it)

– Create a DEVS Modeling Project

– Create a .SES (System Entity Structure – 
Coupled Model) file

– Create specific Atomic models
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DEVS

� MS4ME

– Hello World DEVS – two systems exchanging 
messages;

– First:

● Building the simulation using Activity 
Diagram;
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DEVS

� MS4ME instructions
– Create a new DEVS Modeling Project with name 

Hello;
– In MS4Me Launch Page, select “Sequence 

Diagram” > Create New;
– Specify the model;
– Save it;
– Create > Model;
– Prune SES into PES;
– Run PES in SimViewer.
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A brief look into Atomic Models
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DEVS

� General Rule for Specification of an Atomic Model 
State Machine:

– Communication between two systems is only 
possible if one system is in the sending state 
and the other is in the receiving state.

– “Pattern” for States specification:
DEVS Input:
passivate in << fromState > >!
when in << fromState > > and receive <<dataReceived > > go to << toState > >! 
//external transition!

DEVS Output:
hold in << fromState > > for time 1!
after << fromState > > output << dataType > >!
from << fromState > > go to << toState > >! //internal transition!
<<hold or passivate again to>> <<toState>>!

Source: Valdemar V. Graciano Neto, Wallace Manzano, Adair José Rohling, Mauricio Gonçalves Vieira Ferreira, and Tiago Volpato, Elisa Yumi 
Nakagawa. 2018. Externalizing Patterns for Simulations in Software Engineering of Systems-of-Systems. In Proceedings of SAC 2018: 
Symposium on Applied Computing, Pau, France, April 9–13, 2018 (SAC’18), 8 pages. https://doi.org/10.1145/3167132.3167313
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DEVS

� Example DEVSNL

� HelloWorld.ses

� SES code:

From the top perspective, sequenceDiagram is made of  Someone and Another!

From the top perspective, Someone sends Message to Another!
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DEVS

� Exemplo DEVSNL

� Someone.dnl

//State Machine!
to start hold in s0 for time 2!
after s0 output Message!
from s0 go to s1!
passivate in s1!
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DEVS

� Example DEVSNL

� Another.dnl

to start passivate in s0!
when in s0 and receive Message go to s1!
passivate in s1!
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Exercise

1) Modify the code so that Another also sends 
messages to Someone and they exchange messages 
continuously.
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