
INTRODUCTION
ALEXANDER SEREBRENIK

2IMP40 EMPIRICAL METHODS IN SOFTWARE ENGINEERING

Illustration by Tom Dunne.
American Scientist 99(6):466, 2011

1

ADMINISTRATION

2

3

5 ECTS = 140 h

28h lectures/workshops

1.5h exam

110h homework

Tuesday 13:30-15:15

Thursday 8:45-10:30

Auditorium 13

Check mytimetable.tue.nl

No classes on

December 26, 28

January 2, 4

prof. dr. Alexander Serebrenik

(he/him)

ir. Nathan Cassee

(he/him)

a.serebrenik@tue.nl n.w.cassee@tue.nl

We will try to stay on campus if it is possible, but we will move on-line if needed

http://mytimetable.tue.nl
mailto:a.serebrenik@tue.nl
mailto:n.w.cassee@tue.nl

AFTER TAKING THIS CLASS,

YOU SHOULD BE ABLE TO
• independently design and execute a sound empirical study in Software Engineering

given a state-of-the-art dataset.

• evaluate empirical studies in Software Engineering using tools accepted in the field, and
identify threats to validity.

• describe the results of empirical studies to practitioners not familiar with academic
research.

• comprehend the research methods used for empirical studies in Software Engineering

4

These are the new learning goals but they do not agree with OSIRIS, not sure what to do here

5

LECTURES WORKSHOPS

FlickrWikimedia Commons

We have two kinds of meetings: lectures and workshops. Most of the class meeting will be lectures, but we also have three workshops where you will work

ASSESSMENT
• Assignments:

• Design a study (4 students) 70%

• Describe a study (individual) 30%

• 5 or more to pass the course

• Exam

• January 23, 9:00-12:00

• 5 or more to pass the course

• Final

• Assignments * 0.7 + Exam * 0.3,

if Assignments ≥ 5 and Exam ≥ 5

• min(5, Assignments * 0.7 + Exam * 0.3), otherwise 6

For this assignment there will be a total of four deadlines, the four deadlines will build up, and for each subsequent deadline we expect a more complete version of your
report. The first three deadlines are not mandatory. For these deadlines we will only give feedback on your work to help you improve your report. The fourth deadline is
mandatory and will be graded.

ASSESSMENT
• Assignments:

• Design a Study (4 students) 70%

• Describe a Study (individual) 30%

• 5 or more to pass the course

• Exam

• January 31, 9:00-12:00

• 5 or more to pass the course

• Final

• Assignments * 0.7 + Exam * 0.3,

if Assignments ≥ 5 and Exam ≥ 5

• min(5, Assignments * 0.7 + Exam * 0.3), otherwise 7

Check the syllabus!

Please register!

TEAMWORK MIGHT BE CHALLENGING

8

• Communicate

• Talk to each other and listen to each other

• Be mindful of different working styles

• Make clear and explicit agreements upfront

• Let us know before the submission if the things do not work out

• Take responsibility

• Describe who has done what

• Whether everyone has contributed equally

2IMP40 AND OTHER COURSES
• Prerequisites: no formal prerequisites. We do expect knowledge of basic statistics,

readiness to read scientific papers, familiarity with modern software development, interest
in software engineering research

• GitHub, code review, p-value, DevOps, Wilcoxon test, …

• Software engineering:

• 2IMP25 Software evolution (Q3). 2IMP40 focuses on methods that can be applied to
study different software engineering phenomena incl. software evolution. 2IMP25 focuses
on the insights and techniques designed to study software evolution.

• 2IMP00 Seminar Software Engineering & Technology (Q2/Q4)

• Master project - if you like the topics discussed in the course reach out to Nathan and me!

9

10

And new
videos!

The videos of the 2020/2021 edition are on YouTube https://www.youtube.com/channel/UCUeRK8nJKyj_i_Yz81eHa8g/ playlists This being said (a) several lectures have
been adjusted in 2021/2022 or will be adjusted in 2022/2023, and these lectures are not/will not be recorded, and (b) in addition to lectures we will organise several
workshops - while we are not going to check for presence, the participation in the workshops will help you to work on the assignments. There will be no new recordings
in 2022/2023.

11

PLEASE TELL US WHAT YOU THINK

Both Nathan and I will do our best to make this course interesting for you. Please do not wait till the end of the course to provide us feedback.

SETTING UP THE STAGE

12

ALESSIO FERRARI. EMPIRICAL METHODS IN SOFTWARE ENGINEERING. LECTURE 1.1 - INTRODUCTION HTTPS://WWW.YOUTUBE.COM/WATCH?V=-EQNSQKNJ38&LIST=PLSKM4VZCJJV-P3FFJYMU2OHLTJER9BJL0

EVIDENCE NEEDED: REALITY CHECK

13

How can I find bugs in
my code?

Use our new testing
environment!

But I need to retrain all
my teams!

How can I improve my
requirements?

Use a controlled
language!

But I cannot express
what I want!

How can I reduce the
resources needed for testing?

Use model checking!

I need training! It takes too
long! Models do not capture

what I need!

REASONING/INTUITION A PRIORI ≠ OBSERVATION

Lots of good intentions

Typical consultancy scenario

https://www.youtube.com/watch?v=-EqnsqKnj38&list=PLSKM4VZcJjV-P3fFJYMu2OhlTjEr9Bjl0

• εμπειρία (Greek) - experience

• observation is the only source of knowledge

• reasoning or intuition can be source of belief or
conjecture

• in software engineering

• researchers describe how software is being developed

• to suggest best practices

• how to develop better software (product)

• how to develop software better (process)

EMPIRICISM

PAUL RALPH. THE TWO PARADIGMS OF SOFTWARE DEVELOPMENT RESEARCH. SCIENCE OF COMPUTER PROGRAMMING 156 (2018) 68–89 Illustration by Tom Dunne.
American Scientist 99(6):466, 2011

Empirical research is the structured way of obtaining evidence

should vs is

• ratio (Latin) - reason

• knowledge can be obtained by intuition and
reasoning

• for some rationalists knowledge can also be obtained
by observation

• but this knowledge is inferior to the one obtained
by intuition and reasoning

• in software engineering

• design methods and guidelines how to develop
software

• prescriptive

RATIONALISM

15PAUL RALPH. THE TWO PARADIGMS OF SOFTWARE DEVELOPMENT RESEARCH. SCIENCE OF COMPUTER PROGRAMMING 156 (2018) 68–89

https://www.javatpoint.com/software-engineering-v-model

One of the influential views in software engineering is rationalism.

https://www.javatpoint.com/software-engineering-v-model

“A new way of portraying the technical
aspect of the project cycle clarifies the
role and responsibility of systems
engineering to a project. <…> In our
approach, the technical aspect of the
project cycle is envisioned as a "vee,"
starting with user needs on the upper
left and ending with a user-validated
system on the upper right.”

K. FORSBERG, H. MOOZ, THE RELATIONSHIP OF SYSTEM ENGINEERING TO THE PROJECT CYCLE, ENGIN. MANAG. J. 4 (1992) 36–43.

THE V-MODEL

16

EMPIRICISM OR RATIONALISM?

This is an example of a rational approach to software development. The article does not refer to any kind of observations and is based on the authors’ idea how the
things should be done.

17

Rationalism Empiricism

Methods Developers use methods. Developers rarely use methods as intended if at all.

Requirements Developers elicit requirements from the user. Developers make sense of a problematic context.

Success Success means delivering the required scope
within the established budget and schedule.

Success is “a multidimensional variable comprising
project efficiency, artefact quality, market

performance and stakeholder impacts over time”.

Design
Design is a phase or part of development,

temporally or conceptually situated between
analysis and coding.

Design encompasses the entire development
process from initiation to maintenance.

Problems Development solves given problems. There is no “the problem”, only a context that some
actors view as problematic.

Attitude How software should be developed (prescriptive) How software is being developed (descriptive)

PAUL RALPH. THE TWO PARADIGMS OF SOFTWARE DEVELOPMENT RESEARCH. SCIENCE OF COMPUTER PROGRAMMING 156 (2018) 68–89

VIEWS ON SOFTWARE DEVELOPMENT

break

what questions are meaningful/meaningless for empirical/rational

QUESTIONS
• What is the lower bound of the combinatorial complexity of the fastest possible

comparison-based sorting algorithm?

• The question refers to any theoretically possible algorithm. Answering it requires
mathematical reasoning - rationalism.

• Do managers’ claims about how often they use UML correlate with the actual use of UML?

• The question requires observing claims of managers and use of UML by developers -
empiricism

• What is an effective way for teams to represent design knowledge to improve coordination?

• This is not even about knowledge but about design (neither rationalism nor empiricism)

18STEVE EASTERBROOK, JANICE SINGER, MARGARET-ANNE STOREY, DANIELA DAMIAN. SELECTING EMPIRICAL METHODS FOR SOFTWARE ENGINEERING RESEARCH.
CHAPTER 11 IN GUIDE TO ADVANCED EMPIRICAL SOFTWARE ENGINEERING. SPRINGER 2008

18

QUESTIONS
• What is the lower bound of the combinatorial complexity of the fastest possible

comparison-based sorting algorithm?

• The question refers to any theoretically possible algorithm. Answering it requires
mathematical reasoning - rationalism.

• Do managers’ claims about how often they use UML correlate with the actual use of UML?

• The question requires observing claims of managers and use of UML by developers -
empiricism

• What is an effective way for teams to represent design knowledge to improve coordination?

• This is not even about knowledge but about design (neither rationalism nor empiricism)

19STEVE EASTERBROOK, JANICE SINGER, MARGARET-ANNE STOREY, DANIELA DAMIAN. SELECTING EMPIRICAL METHODS FOR SOFTWARE ENGINEERING RESEARCH.
CHAPTER 11 IN GUIDE TO ADVANCED EMPIRICAL SOFTWARE ENGINEERING. SPRINGER 2008

19

QUESTIONS
• What is the lower bound of the combinatorial complexity of the fastest possible

comparison-based sorting algorithm?

• The question refers to any theoretically possible algorithm. Answering it requires
mathematical reasoning - rationalism.

• Do managers’ claims about how often they use UML correlate with the actual use of UML?

• The question requires observing claims of managers and use of UML by developers -
empiricism

• What is an effective way for teams to represent design knowledge to improve coordination?

• This is not even about knowledge but about design (neither rationalism nor empiricism)

20STEVE EASTERBROOK, JANICE SINGER, MARGARET-ANNE STOREY, DANIELA DAMIAN. SELECTING EMPIRICAL METHODS FOR SOFTWARE ENGINEERING RESEARCH.
CHAPTER 11 IN GUIDE TO ADVANCED EMPIRICAL SOFTWARE ENGINEERING. SPRINGER 2008

20

QUESTIONS
• What is the lower bound of the combinatorial complexity of the fastest possible

comparison-based sorting algorithm?

• The question refers to any theoretically possible algorithm. Answering it requires
mathematical reasoning - rationalism.

• Do managers’ claims about how often they use UML correlate with the actual use of UML?

• The question requires observing claims of managers and use of UML by developers -
empiricism

• What is an effective way for teams to represent design knowledge to improve coordination?

• This is not even about knowledge but about design (neither rationalism nor empiricism)

21STEVE EASTERBROOK, JANICE SINGER, MARGARET-ANNE STOREY, DANIELA DAMIAN. SELECTING EMPIRICAL METHODS FOR SOFTWARE ENGINEERING RESEARCH.
CHAPTER 11 IN GUIDE TO ADVANCED EMPIRICAL SOFTWARE ENGINEERING. SPRINGER 2008

21

QUESTIONS
• What is the lower bound of the combinatorial complexity of the fastest possible

comparison-based sorting algorithm?

• The question refers to any theoretically possible algorithm. Answering it requires
mathematical reasoning - rationalism.

• Do managers’ claims about how often they use UML correlate with the actual use of UML?

• The question requires observing claims of managers and use of UML by developers -
empiricism

• What is an effective way for teams to represent design knowledge to improve coordination?

• This is not even about knowledge but about design (neither rationalism nor empiricism)

22STEVE EASTERBROOK, JANICE SINGER, MARGARET-ANNE STOREY, DANIELA DAMIAN. SELECTING EMPIRICAL METHODS FOR SOFTWARE ENGINEERING RESEARCH.
CHAPTER 11 IN GUIDE TO ADVANCED EMPIRICAL SOFTWARE ENGINEERING. SPRINGER 2008

22

QUESTIONS
• What is the lower bound of the combinatorial complexity of the fastest possible comparison-

based sorting algorithm?

• The question refers to any theoretically possible algorithm. Answering it requires
mathematical reasoning - rationalism.

• Do managers’ claims about how often they use UML correlate with the actual use of UML?

• The question requires observing claims of managers and use of UML by developers -
empiricism

• What is an effective way for teams to represent design knowledge to improve coordination?

• This is not even about knowledge but about design (neither rationalism nor empiricism)

• Next week: Lecture on Design Science

23STEVE EASTERBROOK, JANICE SINGER, MARGARET-ANNE STOREY, DANIELA DAMIAN. SELECTING EMPIRICAL METHODS FOR SOFTWARE ENGINEERING RESEARCH.
CHAPTER 11 IN GUIDE TO ADVANCED EMPIRICAL SOFTWARE ENGINEERING. SPRINGER 2008

23

SHAOWEI WANG, DAVID LO, BOGDAN VASILESCU, ALEXANDER SEREBRENIK: ENTAGREC ++: AN ENHANCED TAG RECOMMENDATION SYSTEM FOR SOFTWARE INFORMATION SITES. EMPIR. SOFTW. ENG. 23(2): 800-832 (2018)

SIDE REMARK: TOOL BUILDERS
• Tend to combine two phases: design phase (based on rational or empirical arguments)

and evaluation phase (empirical)

24

EnTagRec++

How effective is
EnTagRec++?

Problem: tags on Stark Overflow are not up to date

Solution: a tool called EnTagRec++ (design)

Evaluation: effectiveness

INDUSTRY NEEDS EMPIRICAL METHODS…

25

Essentially, this is a matter of reflection: self-reflection, management etc. Understanding what works and what does not.

I have asked on social media why would the industry need empirical methods.

26

Mauricio Aniche

Carianne Pretorius

Adyen

Next Tuesday we will have guests from the industry

27

WE ADOPT EMPIRICISM

In this course we adopt empiricism. The proof of the pudding is in the eating

28

WE ADOPT EMPIRICISM

ONLY BY TRYING THE PUDDING

WE CAN UNDERSTAND

HOW TO MAKE IT BETTER

In this course we adopt empiricism. The proof of the pudding is in the eating

SOFTWARE ENGINEERING DATA SCIENCE

Data collection

Data
analysis

Data interpretation

29

Intervention

(recommendation)

Empirical SE is an interplay between SE and Data Science

SOFTWARE ENGINEERING DATA SCIENCE

30

Design tools and techniques for data that is

• Large

• GitHub: 200M repositories, 83M users

• Stack Overflow: 23M questions

• Diverse

• Structured meta-data

• Source code

• Natural language texts (e.g., transcripts)

• Schemes and diagrams

• Videos (e.g., YouTube instructions)

• Publicly available

• 128M public repositories on GitHub

• Rapidly evolving

• Stack Overflow: 6-7K questions/day

Obtain empirical evidence about what works in
Software Engineering and what does not.

• How effective is modularisation?

• Does Test-Driven Development really work?

• Where do most software flaws come from?

• Are some programming languages make
better programs than others?

• Why are my code reviews not finding
defects?

• …

SOFTWARE ENGINEERING DATA SCIENCE

Data collection

Data
analysis

Data interpretation

31

Intervention

(recommendation) HOW?

So how do we collect, analyse and interpret data and how do we design interventions? We will mostly focus on design, analysis and interpretation

BEFORE WE START:

FIVE RECENT EMPIRICAL STUDIES

32

33

Study 1

34

Who recognises this? (Belgian) apple app store. Reviews of one of the apps (actually it is Pages)

35

Why users give low
ratings to an app?

Who recognises this? (Belgian) apple app store. Reviews of one of the apps (actually it is Pages)

HAMMAD KHALID, EMAD SHIHAB, MEIYAPPAN NAGAPPAN, AHMED E. HASSAN: WHAT DO MOBILE APP USERS COMPLAIN ABOUT? IEEE SOFTWARE 32(3): 70-77 (2015)

METHODOLOGY

36

Data collection

Data analysis

We pick the 20 most popular iOS apps. High (>3.5 stars), low (3.5 stars of less). Collect all reviews. Select review with 1 or 2 stars, in total > 250K. Sample for manual
analysis 6390 reviews (stratified, i.e., every app receives the correct sample of its reviews). Human figure represents manual steps.

37

Why users give low
ratings to an app?

functional error functional error

functional error app crashing feature removal

feature request

most common type of complaints

RESULTS: COMPLAINT TYPES

38HAMMAD KHALID, EMAD SHIHAB, MEIYAPPAN NAGAPPAN, AHMED E. HASSAN: WHAT DO MOBILE APP USERS COMPLAIN ABOUT? IEEE SOFTWARE 32(3): 70-77 (2015)

• Most common: functional error, feature
request, app crashing, network problem

• Most impactful: privacy and ethics,
feature removal, hidden cost, app
crashing

explain ethics

unethical actions of the app developer (e.g., unethical business practices or selling the user’s personal data)

example of privacy & ethical problem: an app that uses FB friends’ list

HAMMAD KHALID, EMAD SHIHAB, MEIYAPPAN NAGAPPAN, AHMED E. HASSAN: WHAT DO MOBILE APP USERS COMPLAIN ABOUT? IEEE SOFTWARE 32(3): 70-77 (2015)

WHAT CAN DEVELOPERS DO?
• Most common: functional error, feature request, app crashing, network problem

• functional error, app crashing, network problem can be directly addressed by developers

• feature request - strategy of app evolution, developers might influence it

• Most impactful: privacy and ethics, feature removal, hidden cost, app crashing

• only app crashing can be directly addressed by developers

• feature removal - strategy of app evolution, developers might influence it

• privacy and ethics, hidden cost - value of the app itself, outside of developers’ control

• Focus on the most impactful complaints

39

hidden cost - costs incurred by the functionality of a free app, for example purchase of game coins with real money

HAMMAD KHALID, EMAD SHIHAB, MEIYAPPAN NAGAPPAN, AHMED E. HASSAN: WHAT DO MOBILE APP USERS COMPLAIN ABOUT? IEEE SOFTWARE 32(3): 70-77 (2015)

WHICH DATA SCIENCE TECHNIQUES WERE USED?

40

Data collection

Data analysis

Archival Data Analysis

a.k.a.

Mining Software Repositories

Sampling Open Coding

Sampling as a way of addressing too many reviews

Open coding is a form of qualitative analysis

41WOCinTech Chat Stock Images @ Microsoft NYC

How to make a good day of a
software developer typical?

How to make a typical day good?

Study 2

Software development is a human activity and it is important for developers to be happy. Otherwise, both the software development process and software products lose
quality (Graziotin et al.) This is a study of Microsoft. Microsoft would like to make developers happy, by making their typical days good and good days - typical.

RESEARCH METHOD

ANDRÉ N. MEYER, EARL T. BARR, CHRISTIAN BIRD, THOMAS ZIMMERMANN: TODAY WAS A GOOD DAY: THE DAILY LIFE OF SOFTWARE DEVELOPERS. IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2020

Survey

37,792 invitations: 500 per day, ~4 months

5,971 responses

10
interviews

Pilot survey

800 invitations

was the previous day typical? good? why?

Taxonomy of
software dev

activities

Drop responses that
did not provide

explanation

Identify recurrent
themes in

explanations

we conducted interviews with developers until the data saturation point was reached [45]. That is, once new interviews yield no additional information, further interviews
will yield only marginal (if any) value. 7 saturations, went up to 10.

pilot the survey and identify any potential problems, we then sent the survey to 800 developers over the course of one week with an additional question asking if any
aspect of the survey was difficult or confusing and soliciting general feedback.

ANDRÉ N. MEYER, EARL T. BARR, CHRISTIAN BIRD, THOMAS ZIMMERMANN: TODAY WAS A GOOD DAY: THE DAILY LIFE OF SOFTWARE DEVELOPERS. IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2020

RESULTS: GOOD DAY

Fig. 1. Conceptual framework for good workdays. The 3 high-level factors are visualized as square layers; outer layers influence the inner layers.

ANDRÉ N. MEYER, EARL T. BARR, CHRISTIAN BIRD, THOMAS ZIMMERMANN: TODAY WAS A GOOD DAY: THE DAILY LIFE OF SOFTWARE DEVELOPERS. IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2020

TYPICAL DAYRESULTS: GOOD DAY

Fig. 2. Conceptual framework characterizing typical workdays. The main factors are visualized as layers; the outer layers influence all inner layers.

WHAT CAN MANAGERS DO?
• Make good days typical (more routine)

• minimise administrative tasks and infrastructure issues

• reduce interruptions and meetings

• Make atypical days good

• work from home when one needs a lot of focus and attention

• no-meeting days

• do a bit of coding during the planning phase

• use slow time (e.g., project wrap-up) for side projects

• Meetings are not necessarily evil

• during non-development phases they are good and (usually) productive

ANDRÉ N. MEYER, EARL T. BARR, CHRISTIAN BIRD, THOMAS ZIMMERMANN: TODAY WAS A GOOD DAY: THE DAILY LIFE OF SOFTWARE DEVELOPERS. IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2020

WHICH DATA SCIENCE TECHNIQUES DID THEY USE?

ANDRÉ N. MEYER, EARL T. BARR, CHRISTIAN BIRD, THOMAS ZIMMERMANN: TODAY WAS A GOOD DAY: THE DAILY LIFE OF SOFTWARE DEVELOPERS. IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2020

Survey

37,792 invitations: 500 per day, ~4 months

5,971 responses

10
interviews

Pilot survey

800 invitations

was the previous day typical? good? why?

Taxonomy of
software dev

activities

Drop responses that
did not provide

explanation

Identify recurrent
themes in

explanations

Interviews

Surveys

Open Coding

Data collection

Data analysis

47
https://iwaria.s3.amazonaws.com/prod/thumbs/1542579473946.422.jpeghttps://alishbahgul.com/wp-content/uploads/2020/05/writer.jpeg

Is prose writing the
same as code

writing?

Study 3

RESEARCH METHOD

RYAN KRUEGER, YU HUANG, XINYU LIU, TYLER SANTANDER, WESTLEY WEIMER, KEVIN LEACH. NEUROLOGICAL DIVIDE - AN FMRI STUDY OF PROSE AND CODE WRITING. INT CONF SOFTWARE ENGINEERING 2020

Student
participants

Demographics and
pre-experiment

surveys
Programming quiz

Training: text editing
in fMRI

Experiment:

17 filling gaps (prose)

9 free form (prose)

17 filling gaps (code)

9 free form (code)

random order of parts

random order of tasks

Post-experiment
survey

Noise removal

Statistics:
Within

participant

Statistics:

Between

participants

Visualisation

Descriptive
stats

48

fMRI - functional magnetic resonance imaging

we collected basic demographic data (sex, gender, age, cumulative GPA, and years of experience) and socioeconomic status (SES) data + three standard psychological
measurement surveys: Positive and Negative Affect Scale (PANAS, emotional health), Autism Spectrum Disorder (ASD), and Need for Cognition (NFC, inclination for
effortful cognition)

programming quiz - knowledge of C/C++

RESULTS: FREE FORM

RYAN KRUEGER, YU HUANG, XINYU LIU, TYLER SANTANDER, WESTLEY WEIMER, KEVIN LEACH. NEUROLOGICAL DIVIDE - AN FMRI STUDY OF PROSE AND CODE WRITING. INT CONF SOFTWARE ENGINEERING 2020 49

• Cold: more prose than code

• Hot: more code than prose

BA 21, 22 (Wernicke’s area)

language, listening comprehension

BA19, 39

spatial cognition

BA7

attention, memory

BA Brodmann area HEMISPHERE

The authors visualise results of statistical analysis using heat-based representation. Free-form prose writing involves areas associated with language. Coding involves
areas associated with attention, memory, planning, and spatial ability.

(1) and (2) are left hemisphere, (3) and (4) are right hemisphere

Areas are merely examples, there are more in the paper

RYAN KRUEGER, YU HUANG, XINYU LIU, TYLER SANTANDER, WESTLEY WEIMER, KEVIN LEACH. NEUROLOGICAL DIVIDE - AN FMRI STUDY OF PROSE AND CODE WRITING. INT CONF SOFTWARE ENGINEERING 2020

WHAT DOES THIS MEAN FOR RESEARCHERS?

• The brain does not treat code writing and prose writing as similar

• Free-form prose writing involves areas associated with language. Coding involves
areas associated with attention, memory, planning, and spatial ability.

• Filling gaps in code requires more activity in areas associated with careful top-down
control, planning, and categorisation.

• However, 38.5% respondents report similarities between writing code and writing prose

• Self-reporting is unreliable! Surveys need to be augmented with objective data analysis.

50

rename

WHICH DATA SCIENCE TECHNIQUES DID THEY USE?

RYAN KRUEGER, YU HUANG, XINYU LIU, TYLER SANTANDER, WESTLEY WEIMER, KEVIN LEACH. NEUROLOGICAL DIVIDE - AN FMRI STUDY OF PROSE AND CODE WRITING. INT CONF SOFTWARE ENGINEERING 2020

Student
participants

Demographics and
pre-experiment

surveys
Programming quiz Training: text editing

in fMRI

Experiment:

17 filling gaps (prose)

9 free form (prose)

17 filling gaps (code)

9 free form (code)

random order of parts

random order of tasks

Post-experiment
survey

Noise removal

Statistics:
Within

participant

Statistics:

Between

participants

Visualisation

Descriptive
stats

51

Data collection Data analysis

Controlled
Experiment

Statistical
Analysis

Visualisation

fMRI - functional magnetic resonance imaging

Participants: students

we collected basic demographic data (sex, gender, age, cumulative GPA, and years of experience) and socioeconomic status (SES) data + three standard psychological
measurement surveys: Positive and Negative Affect Scale (PANAS, emotional health), Autism Spectrum Disorder (ASD), and Need for Cognition (NFC, inclination for
effortful cognition)

programming quiz - knowledge of C/C++

52
https://miro.medium.com/max/13440/1*cyq39_Fi_qPwiAJqgeCsCg.jpeg

What issues do these software teams
have when adopting

DevOps and microservices?

Study 4

DevOps is a set of practices that combines software development (Dev) and IT operations (Ops). It aims to shorten the systems development life cycle and provide
continuous delivery with high software quality. A microservice architecture – a variant of the SOA structural style – is an architectural pattern that arranges an application
as a collection of loosely-coupled, fine-grained services, communicating through lightweight protocols.

https://miro.medium.com/max/13440/1*cyq39_Fi_qPwiAJqgeCsCg.jpeg

RESEARCH METHOD

XIN ZHOU, HUANG HUANG, HE ZHANG, XIN HUANG, DONG SHAO, CHENXING ZHONG: A CROSS-COMPANY ETHNOGRAPHIC STUDY ON SOFTWARE TEAMS FOR DEVOPS AND MICROSERVICES: ORGANIZATION, BENEFITS, AND ISSUES. ICSE (SEIP) 2022: 1-10
53

Grounded Theory

• open coding

• axial coding

• selective coding

Company C1

• 2 students

• December 2020

Company C2

• 1 student as a full-

time assistant
project manager

• July-August 2020

Company C3

• 1 student as an

intern product
owner

• January-April 2020

8 interviews

Focus group

ISSUES IN ADOPTING DEVOPS AND MICROSERVICES?

• Implementation is often fragmentary, disconnecting planning and Dev, Dev and Ops,
sometimes due to department boundaries

• Abuse of technology because it is perceived as fancy

• Recommendations for practitioners:

• establish more connections between different phases of the DevOps project

• reconsider appropriateness of architectural choices

54
XIN ZHOU, HUANG HUANG, HE ZHANG, XIN HUANG, DONG SHAO, CHENXING ZHONG: A CROSS-COMPANY ETHNOGRAPHIC STUDY ON SOFTWARE TEAMS FOR DEVOPS AND MICROSERVICES: ORGANIZATION, BENEFITS, AND ISSUES. ICSE (SEIP) 2022: 1-10

First, software organizations are keen to improve DevOps pipelines (automation, security, etc.), but may have less interest in other essentials (e.g., cross-stream
communications) that DevOps advocates for the holistic improvement. The complete DevOps pipeline was detached into several segments that are barely connected to
each other (Figure 6). The first chasm is between planning and coding. Although C2 builds an association between JIRA and GitLab, the correlation between
requirements and code in the pipeline is elusive. The self-developed project management system in C3 has little to no connection with the code repository. Another
chasm is between operations and others. For example, operational issues could only be resolved in weekly operations meetings in C3. Moreover, the operations of the
Internet infrastructure produced in C1 and C2 are independent from their development. This chasm raises questions about whether DevOps is indeed adopted in
organizations because of the separation of ‘Dev’ and ‘Ops’.

XIN ZHOU, HUANG HUANG, HE ZHANG, XIN HUANG, DONG SHAO, CHENXING ZHONG: A CROSS-COMPANY ETHNOGRAPHIC STUDY ON SOFTWARE TEAMS FOR DEVOPS AND MICROSERVICES: ORGANIZATION, BENEFITS, AND ISSUES. ICSE (SEIP) 2022: 1-10
55

WHICH DATA SCIENCE TECHNIQUES DID THE
AUTHORS USE?

Data collection Data analysis

Grounded Theory

• open coding

• axial coding

• selective coding

Company C1

• 2 students

• December 2020

Company C2

• 1 student as a

full-time assistant
project manager

• July-August 2020

Company C3

• 1 student as an

intern product
owner

• January-April
2020

8 interviews

Focus group

Ethnography

Interviews

Coding

Not common in SE: expensive. Refer to Samar Jameel’s thesis

56
https://mybusinessnews.site/2020/06/22/computer-repair-is-important-for-any-business-or-individual/https://www.businessinsider.com/how-to-teach-yourself-code-and-land-6-figure-job-2019-7?r=US&IR=T

What projects are
more beneficial for

women to join?

Study 5

oss

https://mybusinessnews.site/2020/06/22/computer-repair-is-important-for-any-business-or-individual/
https://www.businessinsider.com/how-to-teach-yourself-code-and-land-6-figure-job-2019-7?r=US&IR=T

RESEARCH METHOD

HUILIAN SOPHIE QIU, ALEXANDER NOLTE, ANITA BROWN, ALEXANDER SEREBRENIK, BOGDAN VASILESCU. GOING FARTHER TOGETHER - THE IMPACT OF SOCIAL CAPITAL ON SUSTAINED
PARTICIPATION IN OPEN SOURCE. INT CONF SOFTWARE ENGINEERING 2019

57

RESULTS OF STATISTICAL ANALYSIS

58HUILIAN SOPHIE QIU, ALEXANDER NOLTE, ANITA BROWN, ALEXANDER SEREBRENIK, BOGDAN VASILESCU. GOING FARTHER TOGETHER - THE IMPACT OF SOCIAL CAPITAL ON SUSTAINED
PARTICIPATION IN OPEN SOURCE. INT CONF SOFTWARE ENGINEERING 2019

Early - logistic regression for contributors who disengage within their first three months of activity

Late - a Cox regression for contributors who disengage later

Interpretation: if the coefficient < 1 then “more X less likely to disengage”, if the coefficient > 1 “more X more likely to disengage”

More popular (i.e., followers), active (i.e., commits to date) and versatile (i.e., niche width) developers are less likely to disengage. Similarly, project owners, major
contributors and contributors to highly starred projects are less likely to disengage. Moreover, as expected, female contributors are at higher risk of disengagement than
males.

Contributing to projects where team members are more familiar pairwise with each other from prior collaborations (Team familiarity), or projects where cliques of three or
more developers recur from prior projects (Recurring cohesion), is associated with decreased risk of disengagement.

The variables related to team diversity also have statistically significant effects. Heterogeneity in the programming language

backgrounds of project team members is associated with decreased risk of disengagement both short and long term. Moreover, language heterogeneity has a
statistically significant interaction with gender: women are more likely to disengage when language heterogeneity is low. Contributing to projects with high turnover (Share
of newcomers) is associated with higher risk of disengagement after the first three months.

RESULTS OF STATISTICAL ANALYSIS

59HUILIAN SOPHIE QIU, ALEXANDER NOLTE, ANITA BROWN, ALEXANDER SEREBRENIK, BOGDAN VASILESCU. GOING FARTHER TOGETHER - THE IMPACT OF SOCIAL CAPITAL ON SUSTAINED
PARTICIPATION IN OPEN SOURCE. INT CONF SOFTWARE ENGINEERING 2019

Early - logistic regression for contributors who disengage within their first three months of activity

Late - a Cox regression for contributors who disengage later

Interpretation: if the coefficient < 1 then “more X less likely to disengage”, if the coefficient > 1 “more X more likely to disengage”

More popular (i.e., followers), active (i.e., commits to date) and versatile (i.e., niche width) developers are less likely to disengage. Similarly, project owners, major
contributors and contributors to highly starred projects are less likely to disengage. Moreover, as expected, female contributors are at higher risk of disengagement than
males.

Contributing to projects where team members are more familiar pairwise with each other from prior collaborations (Team familiarity), or projects where cliques of three or
more developers recur from prior projects (Recurring cohesion), is associated with decreased risk of disengagement.

The variables related to team diversity also have statistically significant effects. Heterogeneity in the programming language

backgrounds of project team members is associated with decreased risk of disengagement both short and long term. Moreover, language heterogeneity has a
statistically significant interaction with gender: women are more likely to disengage when language heterogeneity is low. Contributing to projects with high turnover (Share
of newcomers) is associated with higher risk of disengagement after the first three months.

WHICH DATA SCIENCE TECHNIQUES DID THE
AUTHORS USE?

HUILIAN SOPHIE QIU, ALEXANDER NOLTE, ANITA BROWN, ALEXANDER SEREBRENIK, BOGDAN VASILESCU. GOING FARTHER TOGETHER - THE IMPACT OF SOCIAL CAPITAL ON SUSTAINED
PARTICIPATION IN OPEN SOURCE. INT CONF SOFTWARE ENGINEERING 2019

60

Statistical
Analysis

Sampling

Survey

Tool building
Classifier training

Archival Data
Analysis

(Mining

Software
Repositories)

SUMMARY OF THE STUDIES

61

App reviews Good day/
Typical day

Code and prose DevOps and
microservices

Gender and GitHub

Data source Apple app store Experiences of
developers

Brain activity of
developers

Communication
and development

activities

GitHub

Data collection
Archival data

analysis (Repository
mining), sampling

Interviews,
surveys

Controlled
experiment, post-
experiment survey

Ethnography,
interviews

Archival data analysis

(Repository mining),

sampling, survey

Data analysis Open coding Open coding Statistical analysis,
visualisation Ground Theory Statistical analysis,

machine learning

Beneficiaries Developers Managers Researchers Architects Developers,

women in particular

Recommendation
Focus on the most

impactful
complaints

Make good
days typical
and atypical
days good

Surveys should be
augmented with

objective measures

Reconsider
appropriateness of

the solution and
add connections

Join projects that use
different programming

languages

SUMMARY OF THE STUDIES

62

App reviews Good day/
Typical day

Code and prose DevOps and
microservices

Gender and GitHub

Data source Apple app store Experiences of
developers

Brain activity of
developers

Communication
and development

activities

GitHub

Data collection
Archival data

analysis (Repository
mining), sampling

Interviews,
surveys

Controlled
experiment, post-
experiment survey

Ethnography,
interviews

Archival data analysis

(Repository mining),

sampling, survey

Data analysis Open coding Open coding Statistical analysis,
visualisation Ground Theory Statistical analysis,

machine learning

Beneficiaries Developers Managers Researchers Architects Developers,

women in particular

Recommendation
Focus on the most

impactful
complaints

Make good
days typical
and atypical
days good

Surveys should be
augmented with

objective measures

Reconsider
appropriateness of

the solution and
add connections

Join projects that use
different programming

languages

So many methods…
Which one to choose?

Next lecture…

63

(1) Introduction: Empirical
Software Engineering

Data collection (4-6) Data analysis (7-9)

(2) Research Strategies

Sampling, Interviews and
Surveys, Mining Software

Repositories

(10) Threats to Validity

(3b) Empirical Software Engineering in Industry

(3a) Design Science

Quantitative, Qualitative,
Advanced Repository Mining

Plus three workshops and a coffee-hour

EMPIRICAL PEOPLE @ CS
• Software engineering: Serebrenik, Chaudron, Cleophas, Krüger, Nolte, Ochoa

• PhD students: Cassee, van den Haak, Mohayeji, Paganini, Rukmono

• Security: Allodi, Zannone

• Databases: Fletcher

64

SUMMARY

65

• Empirical Methods in Software Engineering

• empiricism vs. rationalism: observation vs. intuition/reason as a source of knowledge

• research: not all questions are meaningful in all paradigms!

• practice: we need to understand what works/what does not

• evidence-based medicine, reproducibility crisis in psychology, …

• Data collection: repository mining, interviews, surveys, controlled experiment, ethnography…

• Data analysis: statistical analysis, visualisation, open coding, machine learning, …

66

